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Topics 
Session 5

1. What is Machine Learning
a. The field is moving fast
b. Supervised, Unsupervised, Reinforcement, Generative
c. Major Software Packages

2. Regression Models 
a. Gradient Descent Exercise 

3. Binary Classification 
4. Trees & Forests

a. Tree Exercise 
5. Overfitting, Test/Train Splits 
6. Accuracy, Confusion Matrix

Session 6

7. Applied ML: Graduation/Dropout Risk Prediction
8. Model Ensembles
9. Neural Nets

NOT COVERED : LLMs, “AI”, Transformers



1. What is Machine Learning?

“In basic terms, ML is the process of training a piece of 
software, called a model, to make useful predictions or 
generate content from data.” - Google Intro to ML Course 
Accessed Feb 17 2025

"Machine learning is the science of getting computers to act 
without being explicitly programmed." - Andrew Ng (2011) 

Resource: Google Glossary of Machine Learning Terms

https://developers.google.com/machine-learning/intro-to-ml/what-is-ml
https://developers.google.com/machine-learning/intro-to-ml/what-is-ml
http://mlclass.stanford.edu
https://developers.google.com/machine-learning/glossary


September 2014 
a joke about something we can’t do

May 2017 - a joke about the current hot trend

Silicon Valley, S4E4

https://xkcd.com/1425/ 

January 2021 
past classification, now generation
DALL-E 1 
https://openai.com/index/dall-e/ 

3 Years

4 Years

https://xkcd.com/1425/
https://openai.com/index/dall-e/


4 Major Types of Machine Learning Models

● Supervised: Models learn from labeled data to make predictions or classifications based on known 
input-output pairs

○ OLS Regression, logistic regression, random forest, neural networks
○ Predicting student graduation outcomes, Email spam filters

● Unsupervised: Models identify patterns, structures, or groupings in unlabeled data without 
predefined outcomes.

○ Examples: K-means clustering, Principal Component Analysis (PCA)
○ Grouping students into learning clusters based on performance patterns to personalize instruction, Spotify 

music recommendations
● Reinforcement: Models learn optimal decision-making by interacting with an environment and 

receiving rewards or penalties.
○ Deep Q-Networks (DQN), Policy Gradient Methods
○ Developing intelligent tutoring systems that adapt learning paths based on student interactions (Duolingo), 

Google AlphaGo 
● Generative: Models learn to generate new data similar to the training distribution, creating realistic 

text, images, or audio
○ Generative Adversarial Networks (GANs), Large Language Models (LLMs)
○ Colleague.AI, ChatGPT



Scikit-Learn 

● Major open source package in python for Machine Learning 
● Consistent API for ML work
● Transform Data: X_scaled = StandardScaler().fit_transform(X)
● Fit Models: DecisionTreeClassifier().fit(X, y)  
● Predict Outcomes: y_pred = model.predict(X) P
● Evaluate Models: acc = accuracy_score(y, y_pred) 
● Tune hyper-parameters: 

○ param_grid = {"max_depth": [1, 2, 3, 4, 5, None]} 
search = GridSearchCV(model, param_grid, cv=5).fit(X_scaled, y)  

COLAB Example

https://colab.research.google.com/github/ISEA-Repositories/MLsessions/blob/main/Simple_Scikit_Learn_%26_Tensorflow.ipynb


Keras & Tensor Flow 

● Used for deep learning with ‘tensors’
● A tensor is an n-dimensional data structure 

○ A single value (e.g. 9) is a 0 Dimensional tensor, a vector (e.g. [1, 2, 3, 4]) is  1D tensor, a matrix is 2D. 
If an image can be represented as a 2D matrix of pixels, how many dimensions is a GIF? What about 
one with sound? 

● Keras started out independent and has been integrated into TensorFlow
● Consistent API for deep learning 
● Tensors for x and y
● Layers 

○ model = tf.keras.Sequential([ 
  tf.keras.layers.Dense(64, activation='relu'),
  tf.keras.layers.Dense(10, activation='softmax') ])

● Compilation and Optimization 
○ model.compile(

  optimizer='adam', 
  loss='sparse_categorical_crossentropy', 
  metrics=['accuracy']) 

● Fit, Evaluate, Predict
○ model.fit(X_train, y_train, epochs=5)
○ test_loss, test_acc = model.evaluate(X_test, y_test)
○ predictions = model.predict(X_test)

COLAB Example

https://colab.research.google.com/github/ISEA-Repositories/MLsessions/blob/main/Simple_Scikit_Learn_%26_Tensorflow.ipynb


OLS Regression and Gradient Descent

● Create a line through a distribution of x, y data points 
○ Has a slope and an intercept

● Minimize the sum of the squared error (“Cost Function”)
● Coefficients can be calculated directly - but matrix inversion can 

be computationally expensive 
○ Matrix inversion compute cost: O(n3)

● Gradient descent use the slope of the cost function
○ Can be faster with big n: O(k×n2) [k = iterations]

● Gradient Descent is a generalizable optimization 
Framework



Key Steps in Gradient Descent

● Goal: Learn parameters for slope and intercept
● Initialization: Start with random initial values for model parameters
● Iterative Updating of Parameters: 

○ Compute the gradient of the cost function
○ Update parameters using negative gradient and a learning rate

● Convergence, repeat the process until:
○ The cost function converges to a minimum
○ specified number of iterations is reached

Colab Time

Split into groups after intro for 15 minutes

Reconvene at 12:50

https://colab.research.google.com/github/ISEA-Repositories/MLsessions/blob/main/Gradient_Descent_Student.ipynb


5 minute break!

Return at 1:07  



More on Gradient Descent
● Choosing the Learning Rate 

○ Too small you take forever to converge, too large you can get divergent results
○ Use learning rate schedules (step decay, adaptive methods)

● Convergence Issues and Local Minima 
○ Momentum technique, adaptive optimizers (Adam, RMSprop) 

● Feature scaling 
○ Gradient descent can have issues when features are on very different scales
○ Normalize or standardize your features (minmax, z-score) 

● Batch Size
○ Batch (this is what we did) use the whole dataset to compute the gradient

■ Can’t use this if your dataset is enormous and you can’t fit the x’s all in memory
■ Can get stuck in local minima 

○ Stochastic Gradient Descent (SGD) updates parameters one randomly selected input 
row at a time 

■ very noisy, works with very large datasets
○ Mini-batch breaks the data set up into multiple groups (‘batches’) and updates 

parameters one batch at a time



Classification

● OLS, and many other models, create a numeric output, often we want to put data 
into a category, this is called Classification. 

○ Spam / Not Spam, At Risk / Not at Risk 
● OLS, Logistic Regression, Decision Trees, Random Forest, Support Vector 

Machine, Neural Networks are all models used in classification problems. 
● “Thresholding” is the term for converting a continuous score into a class by 

setting a decision threshold 
○ A simple version, predict "positive" if score > 0.5
○ You can examine how categories change with different thresholds
○ Can set multiple thresholds (high, medium, low risk) 
○ Can vary thresholds for different groups (e.g. for demographic parity) 



Trees

● Split data into hierarchical if-then rules based on feature 
values

● Recursively split data to minimize impurity (e.g. Gini Index)
○ Don’t use gradient descent

● Non-linear! 
○ Nice trick for missing data, just put a value far outside the normal 

data range
● Small trees are inherently interpretable 
● Very prone to overfitting
● COLAB Example

https://colab.research.google.com/github/ISEA-Repositories/MLsessions/blob/main/DecisionTrees.ipynb


Overfitting, Test/Train Splits

● In supervised machine learning, we have a set of X features and y outcomes. The goal 
is not to predict the y outcomes we have already observed, but to build a model that 
can generalize to new X inputs and predict unseen y outcomes. If the new set of X and 
y were identical to the training data, we wouldn’t need ML, a lookup table would do!

● It’s easy to forget this and overfit a model, meaning it learns patterns too perfectly in 
the training data, capturing noise or spurious relationships rather than real trends. This 
issue is particularly common in decision trees and neural networks but can also 
happen in regression when using excessive feature interactions or polynomial terms 
(do you really need x1 to x13?).

● To avoid overfitting, split data into training and test sets. Train the model using the 
training set, and evaluate its performance using the test set. The test set should only 
be used at the end; if you check accuracy on it too early, it essentially becomes part of 
the training data, leading to biased estimates of model performance.

A paper where I 
investigate overfitting 
questions in multi-year 
modelling scenarios

https://educationaldatamining.org/edm2024/proceedings/2024.EDM-industry.62/2024.EDM-industry.62.pdf
https://educationaldatamining.org/edm2024/proceedings/2024.EDM-industry.62/2024.EDM-industry.62.pdf
https://educationaldatamining.org/edm2024/proceedings/2024.EDM-industry.62/2024.EDM-industry.62.pdf
https://educationaldatamining.org/edm2024/proceedings/2024.EDM-industry.62/2024.EDM-industry.62.pdf
https://educationaldatamining.org/edm2024/proceedings/2024.EDM-industry.62/2024.EDM-industry.62.pdf


Random Forests

● Decision trees are prone to overfitting their training data 
and generalize poorly 

● Random forests are ensembles (crudely averages) of many 
decision trees each trained on a random subset of the data. 

● They tend to be much more stable and generalize much 
better



Measures of Classification Model Fit: 
Accuracy, Precision, Recall

● Accuracy: Number of correct predictions divided by the total 
number of cases predicted.

○ (True Positives + True Negatives) / Total Cases
○ Would you buy a model that predicts high school graduation rates 

with 90% accuracy?
○ ‘Accuracy’ is not useful alone - beware when that’s the only 

evaluation number given
● Precision: are we over-identifying positive cases?

○ True Positives / (True Positives + False Positives)
● Recall: are we missing positive cases? 

○ True Positives / (True Positives + False Negatives) 
● Lots of measures that build off the confusion matrix framework!
● Also measures based on continuous scores: 

○ Demographic Parity, Calibration, AUC-ROC Colab Simulation Comparing 
Fairness Metrics

https://colab.research.google.com/github/ISEA-Repositories/MLsessions/blob/main/FairnessCompare.ipynb
https://colab.research.google.com/github/ISEA-Repositories/MLsessions/blob/main/FairnessCompare.ipynb


Fairness

● Fairness is application specific, there is no one fairness measure to 
maximize

● What are the consequences of your model’s predictions?  
○ How will impacts of the model be evaluated? ‘Fair’ in the historical 

administrative data isn’t the same as ‘Fair’ in use
■ Paradox: If a model predicts outcome X for user A but not for 

user B, and users take actions to prevent outcome X from 
occurring for A, but it then occurs for B instead, should a 
retrospective analysis conclude that the model was wrong?

● What is the data generating process (DGP) that your model relies on? 
● How does the use of your model connect to the DGP? 



More Fairness 

● Demographic Parity
○ Model’s predictions are independent of a sensitive attribute
○ Positive predictions at equal rates across demographic groups 

■ Does this make sense in an unequal society?
● Calibration Fairness 

○ Predicted risk (p’) is equal to probability of outcome (p) 
○ Measures quality of absolute risk score

● AUC ROC
○ Probability that a randomly selected dropout has a higher risk score 

than a randomly selected graduate
○ Measures quality of relative ranking



HW - Student Risk Predictions

● Rule based models like Allensworth & Easton (2009) “Chicago Model” 
were historically used in identifying students at risk of not graduating high 
school. 

● Mid 2010’s explosion in research in using ML models to predict 
dropout/persistence. 

○ Availability of longitudinal student administrative data 
○ Newly accessible ML techniques 
○ Lots of adoption and commercialization 

● For next session there are several readings about risk prediction systems 
and you will train two models of your choice.

○ I recommend sticking with sci-kit learn 
○ Look at the last section of the decision tree example if you are stuck 

getting started 

https://files.eric.ed.gov/fulltext/ED498350.pdf
https://github.com/ISEA-Repositories/MLsessions/blob/main/DecisionTrees.ipynb


Class Risk Prediction Models
● Comparison of accuracy

○ Logistic ~ 0.88, Trees ~0.84,  RF ~ 0.89
● Did anyone dig into thresholding, or just use the default? 

○ Logistic Regression is calculating a probability not a label!
○ What is RF doing to aggregate the trees? 

● Which data to include? Generally speaking, graduation prediction models are excluding continued enrollment
○ Typical data setup is to have features for year N and outcomes from year N+X - so for 9th grade risk prediction you would observe 

features about 9th graders and collect outcomes from when they were supposed to graduate 4 years later. 
○ Contexts where continuing enrollment as an outcome might be important 

■ 5th year seniors in High School
■ Community Colleges with highly variable time to degree

● Time generalizability 
○ Are the structural factors influencing whether a student graduates or not changing? How exactly is the model working? 
○ See Esbenshade, L., Vitale, J., & Baker, R. S. (2024). Non-Overlapping Leave Future Out Validation (NOLFO): Implications for Graduation Prediction. 

In Proceedings of the 17th International Conference on Educational Data Mining (pp. 602-609). 
■ Models were way more stable than I expected 
■ Relative risk ranking, standardized features are the likely reasons why

● I like normalizing the confusion matrix (display percentages instead of counts)
● Be careful with FP / FN and what you are predicting

○ ‘Negative’ is aligned with the 0 class NOT the “bad” outcome
○ In graduation models you want to be clear on if you are predicting graduation or dropout it will flip around your FP/FN 

interpretations. 
● Role of theory in selecting features 

○ Applied ML is often aggressively a-theoretical and driven by empirical results - but maximizing fit metrics can get you into trouble when 
you need to explain and use the model - especially with education stakeholders!



Key points from Baker et al 2023
● What is a ‘demographic’ variable 

○ ‘Information that provides context about students’ backgrounds and experiences’ 
○ Non-mutable by the school (but ESL vs ELL, cohort-normed age)

● Demographic variables don’t generally lead to more accurate models 
● Color blind racism? 

○ Excluding demographic variables could reify the idea that individuals are solely responsible for their negative outcomes 
○ OR including race could lead to minimization of factors that schools can change

● Demographics are not actionable
● Reinforcing bias in the training data

○ Early LAK paper: Final course grade should be a mechanical composite of assignment grades and participation grades, 
but a prediction model that included race did better than one without. This is strong empirical evidence that the final 
grades were biased. Should a prediction model include race to (accurately) predict that students of the disfavored 
group will get lower final grades? 

○ When systems are biased, use demographics to show that the outcomes are biased and consider systematic 
interventions

● Creating individual predictions because we want to intervene for the individual



● Causal Estimation (Week 13 - quasi-experimental)
○ Uses a Regression Discontinuity Design - 2% to +12% treatment effect 

■ This estimate is local to the risk cut off!
○ Measure effect estimate with all schools (intent to treat) or just schools that 

used it (treatment on the treated)
● Risk prediction is miscalibrated!

○ Dropout risk prediction is actually a sorting mechanism, we only care about relative risk, not absolute 
risk.

● “Are individual risk scores necessary for effectively targeting interventions? We 
propose a simple mechanism that only uses information about students’ 
environments—such as their communities, schools, and districts—and argue that this 
mechanism can target interventions just as efficiently as the individual risk score based 
mechanism.” 

○ Community based interventions are easier and cheaper to implement
○ Week 14: economic evaluation

● Is this argument local to Wisconsin? 
○ “10% of all state dropouts come from just five schools” (WI has ~514 high schools)
○ Wisconsin is one of the most segregated states - ranked 7th in one 2016 study 

(https://en.wikipedia.org/wiki/Education_segregation_in_Wisconsin)

Key Points from Perdomo et al 2023

https://en.wikipedia.org/wiki/Education_segregation_in_Wisconsin


Student Risk Prediction

1) Prediction 
a) Can we accurately predict which students are at risk? Yes, high AUC - this is the typically used metric

i) “Because counselors do not see predicted probabilities, but rather ordered GRAD scores, we chose the area 
under the receiver operating characteristic curve (AUC) metric that measures whether students’ predictions are 
ordered in terms of actual risk” - Christie et al 2019

ii) BUT models often miscalibrated - See perdomo fig 1 - relative risk vs absolute risk 
b) Are the predictions biased? Not very much, generally pretty similar across groups

2) Explainability 
a) Can the predictions be communicated to stakeholders? Yes, various risk buckets

i) BUT explaining why a student is at risk is hard
3) Intervention

a)  Can individuals / schools do something with this data? 
i) BrightBytes tried integrating Risk prediction with Intervention Management tools

b) Are these systems improving graduation rates?
i) As of 2023, I know of no studies showing strong effects from graduation risk prediction systems

4) Structural vs Individual
a) Is this a problem that can be solved at the individual level? 
b) Does making it individual hide structural problems (consider the role of behavior incidents in risk prediction)?



Side note for industry folks - Publish!

● Conferences often have Industry Track submissions, get your work out there! 
● Let academics see how people are really using their methods 

○ In my opinion, application is now the most important part of machine learning research in 
education

● Create a public record of what you are doing 



Ensembles

● Combine multiple models together 
● Can reduce overfitting, improve accuracy, improve generalizability
● BUT: 

○ Increases compute cost 
○ Makes the model even more difficult to explain

● “Bagging”: train models independently on different random data subsets 
(Random Forests) 

● “Boosting”: train weak models sequentially, models fit to errors of prior 
model

● “Stacking”: train separate models and create a meta-classifier
● “Voting”:  have multiple classifiers predict and take average or majority



Class Activity - Create an Ensemble
15 Minutes

1) In your breakout group take 5 minutes to share your HW models with each other 
2) Implement an ensemble of 3 of the models 
3) Use this Colab to get started
4) Finish early? 

a) Discuss ML applications in education that you have worked with 
b) Discuss supervised learning applications that you think would be useful 

i) What is the classification problem
ii) What are the data requirements
iii) What actions will happen because of the prediction 

https://colab.research.google.com/github/ISEA-Repositories/MLsessions/blob/main/Ensemble_Exercise.ipynb


5 Minute Break

Return at 1:07



Introduction to Neural Networks
● What is a Neural Network?

○ A machine learning model inspired by the structure and function of the human brain.
○ Composed of layers of interconnected "neurons" that process and learn patterns from data.

● Biological Inspiration
○ The brain consists of neurons that receive, process, and transmit information.
○ Artificial neurons mimic this process using mathematical functions.

● Why Use Neural Networks?
○ Traditional algorithms struggle with complex pattern recognition (e.g., images, speech, natural 

language).
○ Neural networks excel at detecting patterns, generalizing from data, and making predictions.

● Key Components of a Neural Network
○ Input layer: Receives raw data (e.g., pixel values, words).
○ Hidden layers: Perform computations and extract features.
○ Output layer: Produces the final prediction (e.g., classification, probability).
○ Weights & biases: Parameters adjusted during training to improve accuracy.
○ Activation functions: Introduce non-linearity to model complex relationships.



The Perceptron
● Inputs are multiplied by weights and 

summed
● Activation function > step function converting 

sum into binary 0/1 based on a threshold
● Only works for linearly separable problems 
● Cannot solve complicated problems - 

invented in 1958!

z



Take a minute to solve this:

X1 
= 2

X2 
= 1

W1 
= 

0.5

W2 
= 1

f(z) 

f(z):
Z > 2 then 1 
Z <= 2 then 0

0



Activation Functions

● SO, we have inputs, we multiply them by weights and get a sum. Perceptron with 
binary output is too simple.

● For neural networks we need to have an activation function 
○ Why? If we didn’t, we would just have a linear model, it would be just a really big logistic 

regression 
○ Adding activation functions lets us learn really complex, non-linear patterns

● Sigmoid, Tanh are used 
● Most common is ReLU f(z) = max(0, z)

○ If the sum of weights in a neuron is less than 0, output 0, otherwise output the sum of weights
● Now we can solve problems that are more complex



Update the neural network with 
Backpropagation

● Forward pass: Compute outputs (Pred Y)
● Calculate Loss (lets use MSE again)
● Compute Gradients 
● ‘Backpropagate’: update the weights
● And repeat



Backpropagation

X1 
= 2

X2 
= 1

W1 
= 

0.5

W2 
= 1

f(z) 

f(z): ReLU
max(0,z)

Y = 
1

True Y

2

Pred Y

1) Forward pass: Compute outputs (Pred Y)

2) Calculate Loss (lets use half 
MSE again)

½ (2 - 1)^2 = 0.5

3) Compute Gradients, this is more involved 
with the final output, the activation function and 
the weight
DW1 = -2 * 1 * 0.5 = -1
DW2 = -2 * 1 * 1 = -2

Note: the only difference in the gradient is the dz/dwi 
component, so with OLS we could initialize with uniform 
weights but with neural nets we must use random weights



Backpropagation

X1 
= 2

X2 
= 1

W1 
= 

0.4

W2 
= 

0.8

f(z) 

f(z): ReLU
max(0,z)

Y = 
1

True Y

1.6

Pred Y

4) Update weights, using gradient and learning rate
W1 = -2 * 1 * 0.5 = -1
W2 = -2 * 1 * 1 = -2
a = 0.1

5) And repeat



That was a simple network, and so is this
● Many input X variables 
● The input layer represents 

variables, not rows! 
● ‘Hidden layer’ are the nodes 

between the x input and y 
output 

● You can have many output 
nodes 

○ Multi-classification 
problems 

○ Predict multiple outcomes 
simultaneously 

○ Object detection
● Parameters ~= number of 

connections between nodes 
○ 270 parameters in this 

model 



N Dimensional Tensors
● The neural network 

structure easily 
generalizes to n 
dimensions

● More input nodes and 
connections between 
them



More advanced Neural Nets

● Convolutional
○ Images, videos represented in grid-like data
○ Moves a sliding window around over the data

● Recurrent
○ Time series, text analysis
○ Processes sequences, predicts next word and maintains a memory state of 

prior words
● Transformers

○ RNN strongly focused on order, process one at a time with memory state
○ Transformers use ‘Attention’ to process multiple items in parallel 



● Supervised machine learning methods improved really fast 
○ Standardized tools (Sklearn, TensorFlow, PyTorch etc) 
○ Open datasets and competitions (Kaggle) to maximize metrics 

● Application is the most important issue for education 
○ What are you using ML for? 
○ What actions are going to come out of your system? 
○ Don’t be like ‘AlphaRoute’ that stranded Kentucky students and caused school to be cancelled for a 

week because they wrecked bus routes. 
● Fairness is really important and really hard 
● Basic model creation is now pretty easy with LLMs 

○ BUT - creating good models is still challenging, don’t think that a quick LLM generated random 
forest is going to be good enough to use on students! Real danger of people making models that 
they don’t understand. Edge cases matter when its real people you are impacting.

Machine Learning in Education Key Points

https://apnews.com/article/kentucky-school-bus-problems-alpharoute-a26288e7d4aa4de5b75c4f658705b19a

