
Software (design)
for Data Scientists
ISEA Session 3

David Beck
University of Washington
1.31.2025

Overview of today

1. Motivate the role of intentional software design

2. Overview of a software design approach

3. Users and their stories inform design

4. Use cases describe the function of software

5. Components implement the use cases

6. Testing and testing strategies

"...specification of a software artifact, intended to
accomplish goals, using a set of primitive
components ..." [wikipedia]

Software Design

http://en.wikipedia.org/wiki/Artifact_(software_development)
http://en.wikipedia.org/wiki/Goal

Why design?
“I have an idea and I’m ready to code now!”

> Provides a systematic approach to a complex problem

> Find bugs before you code

> Enables many people to work in parallel

> Promotes testability

> Promotes usability

Benefits of a Software Design

Demonstrably “true” software with features users

want is going to be used.

> Heavy lift for small tasks

> It can be impossible to know when a design is complete

> Others?

Drawbacks of a Software Design

Design fails

> Mars Climate Orbiter (1998-1999)
– $551 million in 2022 USD

– NASA and Lockheed Martin did not specify units in design

> Two separate systems interacted during injection burn

> Foot/pounds = 1.356 Newton-meters

– Bounced of Martian atmosphere circling the sun today

Design fails

> caBIG 2004-2012
– $350 million in 2022 in 2010 USD

– CAncer Biomedical Informatics Grid

– Unified software infrastructure for cancer data collection,
analysis, management, including

> Clinical trials from enrollment to adverse event reporting

> Sample collection, annotation, storage and sharing of medical
imaging data

> Biospecimen management and control

Design fails

> caBIG 2004-2012
– $350 million in 2022 in 2010 USD

– CAncer Biomedical Informatics Grid

– Unified software infrastructure for cancer data collection,
analysis, management

– Who were the users? Pharma? Academic research?

– Did people want the software proposed?

– Competition with existing software

Design fails

> caBIG 2004-2012
– $350 million in 2022 in 2010 USD

> Renamed and replaced by a successor (National
Cancer Informatics Program) in 2012.

• Few components with clear roles

• Few interactions between components

• Carefully choose the features and interfaces

• Similarity with other designs

• Uses design patterns (user interfaces, parallel computing, message
observers, …)

What makes a design understandable?

Simple where

possible is better

1. Identify the users and their needs

2. Functional design
– Describe what the system does (use cases)

3. Component design
– Components are the “software artifacts” that implement the

specific features of the use cases

– Components are often hierarchical and reused

Steps in Design1 Iterate. Iterate. Iterate.

1. There are many paradigms of software design. This is one. It is focused on humans.

Running Example: Design of ATM

User stories

> Who are your users?
– E.g. Researchers, policy makers, educators, learners, …

> What do they want to do with your software?

> How are they going to be interacting with it?

> What skill level(s) do they have and how will that
impact the design?

> Information from interviews, observations, direct
knowledge, best guesses

Design begins with your users

Who is the user. What do they want to do with the tool.
What needs and desires do they want for the tool.
What is their skill level.

Start by writing a user story

Who is the user. What do they want to do with the tool.
What needs and desires do they want for the tool.
What is their skill level.

Start by writing a user story

Ram is a bank customer.

Start by writing a user story

Ram is a bank customer. Ram wants to check his
balance, deposit money.

Start by writing a user story

Ram is a bank customer. Ram wants to check his
balance, deposit money. He rarely uses cash.

Start by writing a user story

Ram is a bank customer. Ram wants to check his
balance, deposit money. He rarely uses cash. Ram
wants a safe and secure interface for interacting with
the ATM.

Start by writing a user story

Ram is a bank customer. Ram wants to check his
balance, deposit money. He rarely uses cash. Ram
wants a safe and secure interface for interacting with
the ATM. Ram’s job does not involve technical skills and
he values a simple user interface.

Start by writing a user story

Ram is a bank customer. Ram wants to check his
balance, deposit money. He rarely uses cash. Ram
wants a safe and secure interface for interacting with
the ATM. Ram’s job does not involve technical skills and
he values a simple user interface.

Start by writing a user story

> We may write multiple stories around similar users
– These can reveal “importance” of certain features

> Take 2-3 minutes to sketch a user story for another
“bank customer.”
(You can’t interview anyone… Use direct knowledge: you are
the user, feel free to express your frustrations with your bank!)

Who is the user. What do they want to do with the tool. What needs
and desires do they want for the tool. What is their skill level.

Start by writing a user story

Asma is a bank customer. Asma wants to check her
balance and take out cash. She uses auto-deposit for
her paychecks. She wants a safe and secure interface
for interacting with the ATM. Asma is quite technical,
but she wants to minimize her time interacting with the
ATM and values a simple interface.

Start by writing a user story

Asma is a bank customer. Asma wants to check her
balance and take out cash. She uses auto-deposit for
her paychecks. She wants a safe and secure interface
for interacting with the ATM. Asma is quite technical,
but she wants to minimize her time interacting with the
ATM and values a simple interface.

Start by writing a user story

> How are Ram and Asma the same?

> How are Ram and Asma different?

> What are the key takeaways from their user stories?

Start by writing a user story
Ram is a bank customer. Ram wants to

check his balance, deposit money. He

rarely uses cash. Ram wants a safe and

secure interface for interacting with the

ATM. Ram’s job does not involve

technical skills and he values a simple

user interface.

Asma is a bank customer. Asma wants to

check her balance and take out cash. She

uses auto-deposit for her paychecks. She

wants a safe and secure interface for

interacting with the ATM. Asma is quite

technical, but she wants to minimize her

time interacting with the ATM and values a

simple interface

> How are Ram and Asma the same?
– Bank customers, check balance, want safe and secure,

simple user interface

> How are Ram and Asma different?
– Use of cash, technical skill level

> What are the key takeaways from their user stories?
– Safety, security and simplicity of the UI

Start by writing a user story

> Other user stories?

> You may have several different kinds of “users”

> There may be a “technician”

> There may be a “systems administrator”

Start by writing a user story

Valentina is an ATM technician. She services ATMs as
part of preventative maintenance, applies hardware
and software updates and for performs emergency
repairs. For maintenance and updates she will follow a
standard protocol. For repairs, she needs access to a
diagnostic interface. Valentina is highly technical and
knows how to replace standardized parts.

Start by writing a user story

Valentina is an ATM technician. She services ATMs as
part of preventative maintenance, applies hardware
and software updates and for performs emergency
repairs. For maintenance and updates she will follow a
standard protocol. For repairs, she needs access to a
diagnostic interface. Valentina is highly technical and
knows how to replace standardized parts.

Start by writing a user story

> Other user stories?

> You may have several different kinds of “users”

> There may be a “technician”
– Train a machine learning model to be used by the system,

manage external data sources

> There may be a “systems administrator”
– Creates user accounts, sends maintenance announcements

Start by writing a user story

> Other user stories?

> Thieves, scammers, safe crackers, ne'er-do-wells
– How do you design “against” these types of “users?”

Start by writing a user story

Use Cases

Functional Design

Running Example: Design of ATM

Ram is a bank customer. Ram wants to check his
balance, deposit money. He rarely uses cash. Ram
wants a safe and secure interface for interacting with
the ATM. Ram’s job does not involve technical skills and
he values a simple user interface.

How to find use cases? In the user stories!

Ram is a bank customer. Ram wants to check his
balance, deposit money. He rarely uses cash. Ram
wants a safe and secure interface for interacting with
the ATM. Ram’s job does not involve technical skills and
he values a simple user interface.

How to find use cases? In the user stories!

Ram is a bank customer. Ram wants to check his
balance, deposit money. He rarely uses cash. Ram
wants a safe and secure interface for interacting with
the ATM. Ram’s job does not involve technical skills and
he values a simple user interface.

How to find use cases? In the user stories!

• Check balances

• Deposit checks

Ram is a bank customer. Ram wants to check his
balance, deposit money. He rarely uses cash. Ram
wants a safe and secure interface for interacting with
the ATM. Ram’s job does not involve technical skills and
he values a simple user interface.

How to find use cases? In the user stories!

• Check balances

• Deposit checks

> Check balances

> Deposit checks

> Get cash

> These are examples of Use Cases.

> They describe the functional potential of software.

What do we do with ATMs?

Ram and Asma

Asma

> What are the inputs and what are the outputs?

> Adding two numbers
– Take a minute to think about this use case

– What are the input(s)?

– What are the output(s)?

– How does the use case transform input to output?

Describing a Use Case (one way)

> What are the inputs and what are the outputs?

> Adding two numbers
– Inputs: two numbers

– Outputs: one number, the sum of the two inputs

– Can we add more detail? What kind of numbers? Positive
and negative?

Describing a Use Case (one way)

> What are the inputs and what are the outputs?

> Check balance
– Take a minute to think about this use case

– What are the input(s)?

– What are the output(s)?

– How does the use case transform input to output?

Describing a Use Case (Check Balance)

> What are the inputs and what are the outputs?

> Check balance
– Input: User selects an account

– Output: ATM displays the current account balance

– The account information is looked up in the account
database and the current balance is retrieved.

Describing a Use Case (Check Balance)

> Some uses cases are implied
– Involved without being a primary use case

– “Easily overlooked”

> What might be an implied use case of an ATM?

Implied use cases are important!

> Authentication is an implied use case.

> Do we need this use case?

> What users is authentication for?

> Take 2-3 minutes to describe the authentication
use case.

Implied use cases are important!

> What information the user provides (inputs)

> What responses the system provides (outputs)

Describing a Use Case (Authentication)

User: Put ATM card in reader

ATM: Display 'Enter PIN'

User: Enters PIN on keyboard

ATM: [if correct] Show main menu

[if incorrect] Display 'Enter PIN'

Authenticate User Use Case

Component
Design

> Software (or other kinds) components “do the work”

> Components store data

> Components calculate values

> Components “interact” with each other

> Components “interact” with the user

> Components can be functions, databases, interfaces,
external web sites, ..

What is a component?

> Breaks down use cases into the required components.

> Describe components in sufficient detail for someone
else (or ChatGPT*) to write the code.

* ChatGPT writes much of the first pass code in my research team based on our text
descriptions of the components.‡

Component design or component spec

https://github.com/EvanKomp/aide/blob/main/docs/component_specification.md

https://github.com/EvanKomp/aide/blob/main/docs/component_specification.md

> Describe components with sufficient detail so that
someone with modest knowledge of the project can
implement the code for the component.
– Name

– What it does

– Inputs (with type information)

– Outputs (with type information)

– How it uses other components

– Side effects

Specification of a component

1. Use case by use case: what are the components
required for this use case?
– A component is a distinct entity that “does the work”

– What are some components on an ATM?

> Display, keypad, card reader, camera

> Cash dispenser, envelope reader

Developing component specifications

1. Use case by use case: what are the components
required for this use case?

2. Are those components used for another use case?
– Good, we can reuse them!

3. Can the component be further divided in complexity for
sub-components?
– Good, we can simplify them!

Developing component specifications

> I really don’t like all your fancy vocabulary.

> What kinds of components have subcomponents?
– User interfaces

> Subcomponents are

buttons, sidebars

– Databases

> Student table

> Teacher table

> Grades table

Subcomponents can be confusing

> What kinds of components have subcomponents?
– User interfaces, databases, application programming interfaces

> When do I need to define a subcomponent?
– Top down or bottom up

– Goal: simple is better

Subcomponents can be confusing

Does subdividing the

component simplify building

or testing the component?

> Authenticate user

> Take 1 minute to think about the components in
the authenticate user use case. What
components can you identify?

ATM components by Use Case

User: Put ATM card in reader

ATM: Display 'Enter PIN'

User: Enters PIN on keyboard

ATM: [if correct] Show main menu

[if incorrect] Display 'Enter PIN'

Authenticate User Use Case

> Authenticate user
– Database with user info including ATM card # and PIN

– Card reader that reads ATM card

– User interface that shows information (80x24)

– User interface that reads user PIN

– Authenticate control logic

> What is this?

ATM components by Use Case

1. https://www.deviantart.com/love-rainbowflower/art/Magic-Happens-Here-lineart-292524154

1

> Check balance

> Take 1 minute to think about the components in
the check balance use case. What components
can you identify?

ATM components by Use Case

> Check balance
– Database with user info including account balances

– User interface that reads account selection

– User interface that shows information (80x24)

– Check balance control logic

ATM components by Use Case

Identify shared components

> User interface (output)?

> User interface (input)?

> Database?

> Control logic?

> User interface (output)? Yes!

> User interface (input)? Yes!

> Database? After subcomponents.

> Control logic? No!

Identify shared components

> Authenticate user control logic

> Take 2-3 minutes to sketch out a specification for
the authenticate user control logic component.

Specify components

Name: Authenticate user control logic

What it does:
– Verifies a user is in the database and that the PIN supplied by the user matches the PIN in the

database

Inputs (with type information)
– Card number, a string that is the user’s card number

– PIN, an integer

Outputs (with type information)
– Boolean: True if success, False if failure

Components used: ATM card reader supplies Card number input, user inputs PIN via keypad, verification is

performed by database

Side effects: If successful, all other bank customer use cases are enabled for the User matching the Card number.

Specify components

> Check balance control logic

> Take 2-3 minutes to sketch out a specification for
the check balance control logic component.

Specify components

Name: Check balance control logic

What it does:
– Looks up a user's account that they provided in the account database and returns the current

balance associated with that account in the database.

Inputs (with type information)
– Account number, a string that is the user’s account number

Outputs (with type information)
– False if account does not exist or a floating-point number equal to the account balance

Components used: User selects an Account Number shown on the display with keypad input and the verification and

balance lookup is provided by the database

Side effects: None.

Specify components

https://en.wikipedia.org/wiki/Floating-point_arithmetic

Overview of today

1. Motivate the role of intentional software design

2. Overview of a software design approach

3. Users and their stories inform design

4. Use cases describe the function of software

5. Components implement the use cases

6. Testing and testing strategies

Component specifications get you to code

> Code needs review, testing continuously

> Has this happened to you:
– You wrote some code. It works! You are happy.

– You add a neat little feature. You think it works. You are happy.

– It doesn’t work, but you don’t know. You will be sad.You found out before anything bad happened.

> Code that checks if other code (code under test) is
working properly

> If the “code under test”
– Runs successfully

– Fails gracefully (as expected, when expected)

> The tests pass and the code is “accepted” as working

What is software testing?

def code_under_test(a, b):

return a + b

What is the code under test?

What is the code under test doing?

Could we name the code under test function better?

What is software testing?

def add(a, b):

return a + b

What is a test we can do for add?

Is this sufficient?

What is software testing?
if add(0, 0) == 0:

return True

else:

return False

def add(a, b):

return a + b

Can we test a different a, b pair?

Is this sufficient?

What is software testing?
if add(0, 1) == 1:

return True

else:

return False

if add(0, 2) == 2:

return True

else:

return False

def add(a, b):

return a + b

Can we test many a, b pairs?

Is this sufficient?

Testing is hard! Testing is fun! Testing can drive
development!

What is software testing?
for i in range(10):

if add(0, i) != i:

return False

add(a, b)

multiply(a, b)

In version 2, we want to support complex numbers. How
can we be sure that our changes don’t break things?

“Continuous integration” or continuously integrating
new code into your software after testing.

The tests pass and the code is “accepted” as working

What is continuous software testing?

Version 1 of our simple math library

https://en.wikipedia.org/wiki/Complex_number

> Can you imagine a piece of software that is missing from your Ed-Tech
workflow, LMS, or some other software that you need? If not, please use
your favorite cell phone application as an example

> What are the top three user stories that would be necessary to begin to lay
out a software design?

> Can you create a set of use cases for each user story?

> How do those use cases derived from different user stories overlap?

> Which use cases will create the biggest design and testing challenges
downstream because of their complexity? Can you identify a complex
component that should be subdivided?

Homework for next week

Interaction diagrams

	Slide 1: Software (design) for Data Scientists ISEA Session 3 David Beck University of Washington 1.31.2025
	Slide 2: Overview of today
	Slide 3
	Slide 4: Software Design
	Slide 5: Why design? “I have an idea and I’m ready to code now!”
	Slide 6: Benefits of a Software Design
	Slide 7: Drawbacks of a Software Design
	Slide 8: Design fails
	Slide 9: Design fails
	Slide 10: Design fails
	Slide 11: Design fails
	Slide 12: What makes a design understandable?
	Slide 13: Steps in Design1
	Slide 14: Running Example: Design of ATM
	Slide 15: User stories
	Slide 16: Design begins with your users
	Slide 17: Start by writing a user story
	Slide 18: Start by writing a user story
	Slide 19: Start by writing a user story
	Slide 20: Start by writing a user story
	Slide 21: Start by writing a user story
	Slide 22: Start by writing a user story
	Slide 23: Start by writing a user story
	Slide 24: Start by writing a user story
	Slide 25: Start by writing a user story
	Slide 26: Start by writing a user story
	Slide 27: Start by writing a user story
	Slide 28: Start by writing a user story
	Slide 29: Start by writing a user story
	Slide 30: Start by writing a user story
	Slide 31: Start by writing a user story
	Slide 32: Start by writing a user story
	Slide 33: Start by writing a user story
	Slide 34: Start by writing a user story
	Slide 35: Use Cases
	Slide 36: Running Example: Design of ATM
	Slide 37: How to find use cases? In the user stories!
	Slide 38: How to find use cases? In the user stories!
	Slide 39: How to find use cases? In the user stories!
	Slide 40: How to find use cases? In the user stories!
	Slide 41: What do we do with ATMs?
	Slide 42: Describing a Use Case (one way)
	Slide 43: Describing a Use Case (one way)
	Slide 44: Describing a Use Case (Check Balance)
	Slide 45: Describing a Use Case (Check Balance)
	Slide 46: Implied use cases are important!
	Slide 47: Implied use cases are important!
	Slide 48: Describing a Use Case (Authentication)
	Slide 49: Component Design
	Slide 50: What is a component?
	Slide 51: Component design or component spec
	Slide 52: Specification of a component
	Slide 53: Developing component specifications
	Slide 54: Developing component specifications
	Slide 55: Subcomponents can be confusing
	Slide 56: Subcomponents can be confusing
	Slide 57: ATM components by Use Case
	Slide 58: ATM components by Use Case
	Slide 59: ATM components by Use Case
	Slide 60: ATM components by Use Case
	Slide 61: Identify shared components
	Slide 62: Identify shared components
	Slide 63: Specify components
	Slide 64
	Slide 65: Specify components
	Slide 66
	Slide 67: Overview of today
	Slide 68: Component specifications get you to code
	Slide 69: What is software testing?
	Slide 70: What is software testing?
	Slide 71: What is software testing?
	Slide 72: What is software testing?
	Slide 73: What is software testing?
	Slide 74: What is continuous software testing?
	Slide 75: Homework for next week
	Slide 76: Interaction diagrams

