Software (design)
for Data Scientists

ISEA Session 3

David Beck
University of Washington
2.7.2024

|||||||||||||

Questions

> For 2025, is there a better example than an ATM?

> Yours?

UNIVERSITY of WASHINGTON

Institute of A . - -
Eaucation Sciences WY 22, AmplifyLearn.A Eiéﬁiﬂﬁﬂ&i Institute O

UNIVERSITY OF

OREGON

Overview of last week and today

1 . ReVieW Of IaSt Week User stories
1. Users and their stories inform design l
2. Use cases describe the function of software Use cases
. (functional design)
2. Components implement the use cases l
3. Testing and testing strategies Component design

4, Debugging
5. Continuous integration

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute O

UNIVERSITY OF

OREGON

Design & testing fails 7& AECL

> Therac-25

Institute of s, . 2 -
é‘dsuL:tii}g Sciences w ‘g__ii Am D |~| fg I—ea m 'Al % SECSGI STATHECNsweVE DI[QV?Z!ILtA?FIg O

Atomic Energy of Canada Limited (AECL)

Built in 1982, 6 accidents from 1985-1987 Q&= . o
Design did not specify what limits were set in hardware VS.
software (why not both?!?!)

Patients were hit with 100x intended radiation dose (50% fatal)

Error handling was a mess
> “Oh Error-54 occurred again? I'll just clear it.”

AECL had never tested the Therac-25 with the combination of
software and hardware until it was assembled at the hospital.

UNIVERSITY of WASHINGTON
UNIVERSITY OF

OREGON

https://en.wikipedia.org/wiki/Therac-25

What makes a de5|gn understandable”

i—— .
\T ! ac
S 1 — i ="
g T

Few components with clear roles

Few interactions between components Simple where
Carefully choose the features and interfaces possible is better
Similarity with other designs

Uses design patterns (user interfaces, parallel computing, message
observers, ...)

UNIVERSITY of WASHINGTON
Institut_eof) 'W gf‘% . eSCience |nSﬁfoe UNIVERSITY OF
Ed ucatlon SCIences é Am p ll fg Lea rn 'Al ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS OREGON

Running Example' De5|gn of ATM

UNIVERSITY of WASHINGTON

Education Sciences VYN _@é AmplifuLearn.Al eScience Institute

UNIVERSITY OF

OREGON

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

Start by writing a user story

Who is the user. What do they want to do with the tool.

What needs and desires do they want for the tool.

UNIVERSITY of WASHINGTON

Insti f Be . . 2
Fiscaton ssiences W L2 AmplifyLearn Al i% eScience Insfitute ()

UNIVERSITY OF

OREGON

Start by writing a user story

Ram is a bank customer.
Ram

wants a safe and secure interface for interacting with
the ATM.

UNIVERSITY of WASHINGTON

Insti f =] . .
Fiscaton ssiences W L2 AmplifyLearn Al ﬁée&ece's”*e O

UNIVERSITY OF

OREGON

Start by writing a user story

>

How are Ram and Asma the same?

How are Ram and Asma different?

Ram is a bank customer. Ram wants to
check his balance, deposit money. He
rarely uses cash. Ram wants a safe and
secure interface for interacting with the
ATM. Ram'’s job does not involve
technical skills and he values a simple
user interface.

Asma is a bank customer. Asma wants to
check her balance and take out cash. She
uses auto-deposit for her paychecks. She
wants a safe and secure interface for
interacting with the ATM. Asma is quite
technical, but she wants to minimize her
time interacting with the ATM and values a
simple interface

What are the key takeaways from their user stories?

UNIVERSITY of WASHINGTON

:;nds:i;:ttﬁ,gfsciences w 5 Amp fuLearn Al %eScience Institute

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

UNIVERSITY OF

OREGON

Use Cases

Functional Design

UNIVERSITY of WASHINGTON

Institute of A . - .
EndSuL:;ti%g Sciences w (ijif‘ AmDUfU Learn.Al %SGSC|GI1C€ |nSf|fUte
= ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

UNIVERSITY OF

OREGON

How to find use cases? In the user stories!

IRl e Ram wants to check his

He rarely uses cash. Ram
wants a safe and secure interface for interacting with
the ATM. Ram'’s job does not involve technical skills and
he values a simple user interface.

 Check balances
* Deposit checks

UNIVERSITY of WASHINGTON

Insti f =4 . . 2
Fiscaton ssiences W L2 AmplifyLearn Al “@% eScience Insfitute ()

UNIVERSITY OF

OREGON

What do we do with ATMs?

> Check balances
> Deposit checks
> Get cash } Asma

1» Ram and Asma

> These are examples of Use Cases.
> They describe the functional potential of software.

UNIVERSITY of WASHINGTON

Institute of s, . 2 -
é‘dsuL:tii}g Sciences w ‘g‘__\i Am D |~| fg I—ea m 'Al % AeDVECSJ SATHECNswevE DI[Q\/?J]{L?IE O

UNIVERSITY OF

OREGON

Describing a Use Case (one way)

> What are the inputs and what are the outputs?

> Adding two numbers

— Inputs: two numbers
— Outputs: one number, the sum of the two inputs

— Can we add more detail? What kind of numbers? Positive
and negative?

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬁg Institute - ()

UNIVERSITY OF

OREGON

Describing a Use Case (Check Balance)

> What are the inputs and what are the outputs?

> Check balance
— Input: User selects an account
— Output: ATM displays the current account balance

— The account information is looked up in the account
database and the current balance is retrieved.

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A Eggiggqgg Institute O

UNIVERSITY OF

OREGON

Describing a Use Case (Authentication)

> What information the user provides (inputs)

> What responses the system provides (outputs)
Authenticate User Use Case

User: Put ATM card in reader

ATM: Display 'Enter PIN'

User: Enters PIN on keyboard

ATM: [if correct] Show main menu
[if incorrect] Display 'Enter PIN'

UNIVERSITY of WASHINGTON

Institute of w -) S o | é
ol &= eoclience Institute
Education Sciences \i“‘-:}"‘:sg’/ Am D Ll fg Lea m 'Al ADVANCING DATAINTENSIVE DISCOVERY IN ALL FIELDS

UNIVERSITY OF

OREGON

Component
Design

UNIVERSITY of WASHINGTON

Institute of -) . .
EndSuL:;ti%g Sciences w Eﬂﬁj‘ AmDUfU Learﬂ_Al ¥68C|ence |n5htUte
= ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

UNIVERSITY OF

OREGON

What is a component?

VvV V V V VvV V

Software (or other kinds) components “do the work”
Components store data

Components calculate values

Components “interact” with each other
Components “interact” with the user

Components can be functions, databases, interfaces,
external web sites, ..

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute O

UNIVERSITY OF

OREGON

Developing component specifications

1. Use case by use case: what are the components
required for this use case?

2. Are those components used for another use case?
— Good, we can reuse them!

3. Can the component be further divided in complexity for
sub-components?
— Good, we can simplify them!

UNIVERSITY of WASHINGTON

Institute of A . - -
Eaucation Sciences WY 22, AmplifyLearn.A %&S&Sﬂ&i Institute O

UNIVERSITY OF

OREGON

Specification of a component

> Describe components with sufficient detail so that
someone with modest knowledge of the project can
implement the code for the component.

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute - ()

Name

What it does

Inputs (with type information)
Outputs (with type information)
How it uses other components
Side effects

UNIVERSITY of WASHINGTON
UNIVERSITY OF

OREGON

Identify shared components

> Authenticate user > Check balance
— Database with user info including ATM card # and PIN — Database with user info including account balances
— Card reader that reads ATM card — User interface that reads account selection
— User interface that shows information (80x24) — User interface that shows information (80x24)
— User interface that reads user PIN — Check balance control logic

— Authenticate control logic

> User interface (output)?
> User interface (input)?

> Database?
> Control logic?

Institute of

UNIVERSITY OF

. UNIVERSITY of WASI;HNGTON
B s W] L ArplitgLeam Al “sfiSeScience insiie OREGON

Identify shared components

> Authenticate user

Database with user info including ATM card # and PIN -
Card reader that reads ATM card -
User interface that shows information (80x24) -
User interface that reads user PIN -
Authenticate control logic

> Check balance

Database with user info including account balances
User interface that reads account selection

User interface that shows information (80x24)
Check balance control logic

User interface (output)? Yes!

User interface (input)? Yes!

Database?
Control logic? No!

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %Sﬁﬂﬁﬂ&i Institute O

UNIVERSITY of WASHINGTON
UNIVERSITY OF

OREGON

Overview of today

1. Review of last week
1. Users and their stories inform design
2. Use cases describe the function of software

2. Components implement the use cases
3. Testing and testing strategies

4. Debugging

5. Continuous integration

UNIVERSITY of WASHINGTON

Institute of s, . : -
é‘dsuL:tii}g Sciences w ‘g‘__ji Am p |~| fg I—ea m 'Al % S/ECSGI STATHECNsweVE D||52v§z!|LtA?th O

UNIVERSITY OF

OREGON

Identify components for a Use Case

> Some use cases appear to only have one component

— Use case “add numbers”
Adding two numbers
— Inputs: two numbers
— Outputs: one number, the sum of the two inputs

— What components are necessary?
> “Add numbers function”
> QOthers?
. UNIVERSITY of WAStHNG'I'ON
. W B AmpliyLeanal “ffieScience insitvie ()

UNIVERSITY OF

OREGON

— Name

— What it does

— Inputs (with type information)
— Outputs (with type information)

o
SpeCIfy a component — How it uses other components

— Side effects

Name: Add numbers function
What it does:

— Computes the sum of two numbers. The numbers can be integers or numbers with decimals.
They may be positive or negative.

Inputs (with type information)
— @0, a number which can be an integer, decimal, positive & negative, must be finite and real
— b, a number which can be an integer, decimal, positive & negative, must be finite and real

Outputs (with type information)
— sum, a number (integer, decimal, positive, negative, finite, real) that is the sum of a and b

Components used: None.
Side effects: None.

ATM components by Use Case

> Authenticate user
— Database with user info including ATM card # and PIN
— Card reader that reads ATM card
— User interface that shows information (80x24)
— User interface that reads user PIN

— Authenticate control logic
> What is this? %

Q
_a2)

Q "
4
'uu
R 1 UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute O

]

UNIVERSITY OF

OREGON

1. https://www.deviantart.com/love-rainbowflower/art/Magic-Happens-Here-lineart-292524 154

Name

What it does

Inputs (with type information)
Outputs (with type information)
How it uses other components
Side effects

Specify components

> Authenticate user control logic

> Take 2-3 minutes to sketch out a specification for
the authenticate user control logic component.

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute O

UNIVERSITY OF

OREGON

— Name

— What it does

— Inputs (with type information)
— Outputs (with type information)

°
SpeCIfy compﬂnents — How it uses other components

— Side effects

Name: Authenticate user control logic

What it does:

— Verifies a user is in the database and that the PIN supplied by the user matches the PIN in the
database

Inputs (with type information)
— Card number, a string that is the user’s card number
— PIN, an integer

Outputs (with type information)
— Boolean: True if success, False if failure

Components used: ATM card reader supplies Card number input, user inputs PIN via keypad, verification is
performed by database

Side effects: if successful, all other bank customer use cases are enabled for the User matching the Card number.

Name

What it does

Inputs (with type information)
Outputs (with type information)
How it uses other components
Side effects

Specify components

> Check balance control logic

> Take 2-3 minutes to sketch out a specification for
the check balance control logic component.

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute O

UNIVERSITY OF

OREGON

— Name

— What it does

— Inputs (with type information)
— Outputs (with type information)

°
SpeCIfy COmpﬂnentS — How it uses other components

— Side effects

Name: Check balance control logic
What it does:

— Looks up a user's account that they provided in the account database and returns the current
balance associated with that account in the database.

Inputs (with type information)
— Account number, a string that is the user’s account number

Outputs (with type information)

— False if account does not exist or a floating-point number equal to the account balance

Com ponents used: user selects an Account Number shown on the display with keypad input and the verification and
balance lookup is provided by the database

Side effects: None.

https://en.wikipedia.org/wiki/Floating-point_arithmetic

Digression: Card number as a string?

> Bank card number, e.g.
— 553412341234 1234

> Should / could this be a number? ... a - vss31123412321232"

>>> b = 5534123412341234

> Should / could this be a string? >>> len(a)

16

— Test for equality 2> len(®)

— Use the Ord|na||ty7 TypeError: object of type 'int' has
no len()

— Test for number of digits
UNIVERSITY of WASHINGTON
Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬁg Institute ()

UNIVERSITY OF

OREGON

— Name

— What it does

— Inputs (with type information)
— Outputs (with type information)

°
SpeCIfy components — How it uses other components

— Side effects

Name: Check balance control logic
What it does:

— Looks up a user's account that they provided in the account database and returns the current
balance associated with that account in the database.

Inputs (with type information)
— Account number, a string that is the user’s account number

Outputs (with type information)

— False if account does not exist or a floating-point number equal to the account balance

Com ponents used: user selects an Account Number shown on the display with keypad input and the verification and
balance lookup is provided by the database

Side effects: Erases the current content on the user facing display.

https://en.wikipedia.org/wiki/Floating-point_arithmetic

-

— ——
. e 1 Iterate. Iterate. Iterate.
Steps in Design T

=
1. Identify the users and their needs

2. Functional design
— Describe what the system does (use cases)

3. Component design

— Components are the “software artifacts” that implement the
specific features of the use cases

— Components are often hierarchical and reused

1. There are many paradigms of software design. This is one. It is focused on humans.
UNIVERSITY of WASHINGTON

Institute of - ; . o
Educaton soiences W 22 AmplifyLearn.Al eScience Institute ()

UNIVERSITY OF

OREGON

Overview of today

1. Review of last week
1. Users and their stories inform design
2. Use cases describe the function of software

2. Components implement the use cases
3. Testing and testing strategies

4. Debugging

5. Continuous integration

UNIVERSITY of WASHINGTON

Insti f s . . .
Eiscatonseiences WY L AmplifyLearn.Al %iée&ece'”*e O

UNIVERSITY OF

OREGON

Component specifications get you to code

> Code needs review

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A ﬁégﬁﬂgﬂgg Institute - ()

UNIVERSITY OF

OREGON

Code Review Template

. Dispassionate third party * Background

— Tour of the code with — Describe what the application does
necessary context — Describe the role of the code being
— Improving code quality and reviewed
find bugs with questions « Comment or question
— “Why did you call this variable _ . . :
snuffleupagus when it stores the Choice of variable and function names
average grade?” — Readability of the code
— “This code is repeated, can it be a . . .
function?” — How improve reuse and efficiency
~ "Whatis happening HEREZ!12" — How use external software packages

UNIVERSITY of WASHINGTON
v

Instituteof w g AmplifyLearn.Al EiéfeSaence Institute

UNIVERSITY OF

OREGON

= ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

Code Review Template

. Dispassionate third party * Background

— Tour of the code with — Describe what the application does
necessary context — Describe the role of the code being
— Improving code quality and reviewed
find bugs with questions « Comment or question
S — Choice of variable and function names
Assume B — Readability of the code
gOOd Wl ” &‘QQ — How improve reuse and efficiency
~—” — How use external software packages

UNIVERSITY of WASHINGTON

Institute of B . §
it W L2 AmpliyLearn A " eScience insie

UNIVERSITY OF

OREGON

httne: /ismaaw teaamwork com/bloa/diceanreeaina-ecandwich-techniaiie/

Component specifications get you to code

> (Code needs review
> (Code needs testing

> Has this happened to you:
— You wrote some code. It works! You are happy.

— You add a neat little feature. You think it works. You are happy.
— ltdoesn't wo rk, You found out before anything bad happened.

UNIVERSITY of WASHINGTON
Institute of

Education Sciences w i\t\i}é Am D L| fu I_ea m Al %Sﬁf! gmgsew Dllgviflllﬂtg O

UNIVERSITY OF

OREGON

What is software testing?

> Code that checks if other code (code under test) is
working properly

> |f the “code under test”

— Runs successfully
— Fails gracefully (as expected, when expected)

> The tests pass and the code is "accepted” as working

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute O

UNIVERSITY OF

OREGON

What is software testing?

def code under test(a, b):
return a + b

What is the code under test?
What is the code under test doing?
Could we name the code under test function better?

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute O

UNIVERSITY OF

OREGON

What is software testing?

if add(0, 0) ==
def add(a, b): return True

return a + b else:
return False

What is a test we can do for add?
Is this sufficient? Why or why not?

UNIVERSITY of WASHINGTON

Institute of A . : :
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬁg Institute - ()

UNIVERSITY OF

OREGON

What is software testing?

if add(0, 1) ==
def add(a, b): return True

return a + b else:
return False

Can we test a different a, b pair?
Is this sufficient? if add(0, 2) ==
return True
else:
return False

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %Sﬁfﬁﬂﬁiiﬂvﬂﬂtﬁ O

UNIVERSITY OF

OREGON

What is software testing?
for i in range(10):
def add(a, b): if add(0, i) !'= i:

return a + b return False

Can we test many a, b pairs?
s this sufficient?

Testing is hard! Testing is FUN!

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬁg Institute - ()

UNIVERSITY OF

OREGON

Some ‘“types” of testing

> “Smoke” testing

— Does it “catch fire and burn” when you try to run the “code

under test”
— Most basic, limited information about system

Code under test Test code

def add(a, b): add (0, 0)
return a + b

UNIVERSITY of WASHINGTON

Insti f s . . .
Ehicsionscences WA LEL AmplifyLeam.A ﬁéSﬁ?!iﬂ&?m.[ﬂimﬂtﬁ

UNIVERSITY OF

OREGON

O

Some ‘“types” of testing

> "One-shot” testing

— Does the code under test perform correctly for a specific set of
inputs
— Tests the correctness of code

Code under test Test code
def add(a, b): if add(0, 0) ==
return True

return a + b
else:

- return False
v W ZE AmpligLeam Al *gfesovence mmve Q) | GREGON

Some ‘“types” of testing

> “Pattern” testing

— Does the code under test perform correctly for a pattern of
input cases

— Tests the correctness of code across a range of inputs

Code under test Test code
def add(a, b): for 1 in range(10):
if add(0, 1) '= i:
return False

return True
Insti f Al .] . . : el
cincatonsciences WY L AMplifyLeamn Al > ocience msiuie g | GREGON

return a + b

Some ‘“types” of testing

> "“Edge” testing
— Does the code under test perform correctly for invalid and
“special” inputs
— Tests the error handling and “singular” value handling

Code under test Test code
def add(a, b): if add(“4”, 0) !'= 0:
return True

return a + b
else:

- return False
Chucionsconcss W LZ Amplifyleam Al g societice ianve Q) | OREGON

Some ‘“types” of testing

“Edge” testing
— Does the code under test perform correctly for invalid and
“special” inputs
— Tests the error handling and “singular” value handling

Code under test Test code

def add(a, b): assertRaises (TypeError,

return a + b add (“47, 0))

UNIVERSITY of WASHINGTON

:;nds:i;:ttﬁ,gfsciences w 5 & Amp“ ULearn Al %eScience Institute

UNIVERSITY OF

OREGON

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

Some ‘“types” of testing
“Smoke” test

— Calling the code under test to see if it “catches fire”

> “One-shot” test

— Calling the code under test with known inputs expecting specific outputs
> “Pattern” test

— Calling the code under test with a pattern of known inputs expecting a pattern of outputs

> “Edge” test

— Calling the code under test in “edge cases” and in predefined failure
modes to make sure it fails gracefully. FUN!

> These names are for our convenience.

Institute of

Education Sciences w E =3 Amp“ ULearn Al eScience Institute O

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

UNIVERSITY of WASHINGTON
UNIVERSITY OF

OREGON

How many tests for each component?

> There is no magic number

> Patterns > One-shot > Smoke
— Not all tests offer the same “value” in testing
— Patterns reveal more possible failure modes

> Number of tests is less important than code coverage

Test coverage and code coverage is an

important concept in software engineering

and can make and break job interviews.
UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬁg Institute - ()

UNIVERSITY OF

OREGON

What is code coverage?

> Fraction (%) of lines of code “exercised” by a test
— How many lines in add?
— What percentage of those lines are executed by our test?
100% (1 of 1 lines of add were executed)

Code under test Test code

def add(a, b): add (0, 0)
return a + b

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute O

UNIVERSITY OF

OREGON

What is code coverage?

> Fraction (%) of lines of code “exercised” by a test

— What percentage of those lines are executed by our test?
100% (1 of 1 lines of add were executed)

Code under test Test code
def add(a, b): if add(0, 0) ==
return a + b return True
else:

- return False
s W ZE AmpligLeamal *gfiesovence mmve Q) | GREGON

What is code coverage?

> Fraction (%) of lines of code “exercised” by a test

— What percentage of those lines are executed by our test?
100% (1 of 1 lines of add were executed)

Code under test Test code
def add(a, b): for 1 in range(10):
if add(0, 1) '= i:
return False

return True
Insti f Al .] . . : el
cincatonsciences WY L AMplifyLeamn Al > socience msiuie g | GREGON

return a + b

= W N

What is code coverage?

Code under test

def add or multiply(op, a, b):

if op == “+”:
return a + b
else:
return a * b

Test code

if add or multiply(“+”, 0, 1) != 1:
return False

Code coverage?
50%

)

UNIVERSITY OF

OREGON

= W N

What is code coverage?

Code under test

def add or multiply(op, a, b):

if op == “+”:
return a + b
else:
return a * b

Test code

if add or multiply(“*”, 0, 1) != 0:
return False

Code coverage?
75%

)

UNIVERSITY OF

OREGON

What is code coverage?

Code under test

def add or multiply(op, a, b):

= W N

if op == “+":
return a + b
else:
return a * b Code coverage?
Test code 100%
if add or multiply(“+”, 0, 1) != 0:
return False
if add or multiply(“*”, 0, 1) != 0:) 8ﬁg&%§

return False

Is code coverage alone enough?

Code under test

def add or multiply(op, a, b):

= W N

if op == “+”:
return a + b
else:
return a * b Code coverage?
Test code 100%
if add or multiply(“+”, 0, 1) != 0:
return False
if add or multiply(“/”, 0, 1) == 0:) 8ﬁg&%§

return False

Testing is hard! Testing is fun!

> Mode of thinking: How can | break this?

> Want to get better?
— Practicel!

> “Software engineer in test” is a specific job
— Software development engineering in test (SDET)
— U.S. Bureau of Labor Statistics predicts > 25% job growth
— Pathway to a Software Development Engineer

UNIVERSITY of WASHINGTON

Institute of A . : .
Eaucation Sciences WY 22, AmplifyLearn.A Eiéﬁiﬂﬁﬂ&i Institute O

UNIVERSITY OF

OREGON

https://www.bls.gov/

Testing is only as good as your imagination!

> “Software engineer in test” is a specific job
— Software tester walks into a bar...
— Software tester run into a bar...
— Software tester crawls into a bar...
— Software tester walks into a bar and orders a drink...
— Software tester runs into a bar and orders a drink...
— Software tester crawls into a bar and orders a drink...

— User walks into a bar and asks for the bathroom.

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬁg Institute - ()

UNIVERSITY OF

OREGON

What does this look like in files?

> One source file for code, one source file for tests
— math.py has an accompanying test math.py

math.py test_math.py
def add(a, b): def test_add():

def multiply(a, b): def test_multiply():

\/ \/-

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute O

UNIVERSITY OF

OREGON

What does this look like in files?

math.py test_math.py
def add(a, b): def test_add():
return a+b

def multiply(a, b):

\/—

Institute of
Education Sciences

def test_multiply():

s

—

w E =3 Amp“ ULearn Al %GSCience |nSﬁfUte

r-def test add():

for i1 in range(10):
assert add(0, 1) == 1

UNIVERSITY of WASHINGTON
UNIVERSITY OF

OREGON

What does this look like in projects?

my_project/

/\tést/
T

math.py test_math.py
def add(a, b): def test_add():
return a+b

def multiply(a, b): def test_multiply():

_/ \/-

UNIVERSITY of WASHINGTON

Institut f . .
Eiscatonseiences WY L AmplifyLearn.Al %5 Institute

UNIVERSITY OF

OREGON

What does this look like in real projects?

my_project/

-

math.py student.py test_math.py test_student.py
def add(a, b): def lookup(id): def test_add(): def test_lookup():
return a+b

def multiply(a, b): ||def score(id, ans) def test_multiply(): def test_score():

UNIVERSITY of WASHINGTON

IEndsL’:E:ttﬁ’ngCiences w E =3 Amp“ ULearn Al %eSCience Institute

UNIVERSITY OF

OREGON

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

What does this look like in day to day?

> After each change to a function or file (e.g. math.py)

my_project/

— Rerun the tests (test math.py) i

- —
test_math.py test_student.py

def test_add(): def test_lookup():

def test_multiply(): def test_score():

— Do we need to run all tests?
Yes!

nnnnnnnnn

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A Eiéﬁiﬂﬁﬂ&i Institute O

UNIVERSITY OF

OREGON

What does this look like in day to day?

> After each change to a function or file (e.g. math.py)

— Rerunthe tests (test math.py)

— —
test_math.py test_student.py

def test_add(): def test_lookup():

ef test_multiply(): def test_score():

— Do we need to run all tests?
> The design should tell us
> Component specification includes component interactions
> Component specification includes side effects

UNIVERSITY of WASHINGTON

Institut f . .
Eiscatonseiences WY L AmplifyLearn.Al %5 Institute

UNIVERSITY OF

OREGON

Testing is highly automated with tooling

> After each change to a function or file (e. g math oY)

uuuuuuuuu

— Rerun the tests (test _ma th.py —
— — T
math.py student.py test_math.py test_student.py
def add(a, b): def lookup(id, def test_add| def test_lookup|
return a+b .

— Do we need to run all tests?
> |f components inmath.py call components in student.py, yes
> |f components in student.py call componentsin math.py, yes

UNIVERSITY of WASHINGTON

:;nds:i;:ttﬁ,gfsciences w 5 & Amp“ ULearn Al %eScience Institute

UNIVERSITY OF

OREGON

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

Testing can be a big lift for large software

> After each change to a function or file (e.g. math.py)
— Rerun all the tests (test math.py, test student py)

yyyyyyyyy

— Testing is automated, so run them all

— Big software projects
> Testing can be expensive (money & time)
> Automated tests can be run 100s of times a day

UNIVERSITY of WASHINGTON

Institut f . .
Eiscatonseiences WY L AmplifyLearn.Al %5 Institute

UNIVERSITY OF

OREGON

Test-driven development

>

Testing is automated
— pytest, nosetest, python —m unittest

Tests can be written from component specifications
Tests can be written without “code under test”

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute O

UNIVERSITY OF

OREGON

Test-driven development

> Tests can be written without “code under test”

Code under test

Test code Test code output
def test add(): >>> test add()
for i in range(10): [...]
assert add (0, i) == i NameError: name 'add'

is not defined
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬁg Institute - ()

UNIVERSITY OF

OREGON

Test-driven development

> Tests can be written with empty “code under test”

Code under test

def add(a, b):

Pass Do nothing, take no action, no operation, return None

Test code Test code output
def test add(): >>> test add()
for i in range(10): [...]
assert add (0, i) == i AssertionError

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬁg Institute - ()

UNIVERSITY OF

OREGON

Test-driven development

> Tests can be written to drive writing “code under test”

Code under test

def add(a, b):
return a + b

Test code Test code output
def test add(): >>> test add()
for i in range(10): >>>
assert add (0, i) == 1 No errors so a success

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute - ()

UNIVERSITY OF

OREGON

Test-driven development

> Tests are written against the component specification
> All components are implemented as ‘pass’
> All tests: Get el e
— FAIL!
> Write code until all tests pass

> Release software bug free!

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute - ()

UNIVERSITY OF

OREGON

Overview of today

1. Review of last week
1. Users and their stories inform design
2. Use cases describe the function of software

2. Components implement the use cases
3. Testing and testing strategies

4. Debugging

5. Continuous integration

UNIVERSITY of WASHINGTON

Insti f =4 . . 2
Fiscaton ssiences W L2 AmplifyLearn Al %ié eScience Insfitute ()

UNIVERSITY OF

OREGON

When tests fail: Debugging

> What s a bug?

— “Asoftware bug is an error, flaw, failure, or fault in a computer program
or system that causes it to produce an incorrect or unexpected result, or
behave in unintended ways.” - Wikipedia

> Where did the term come from?
— Thomas Edison (1878, letter to associate) - Wikipedia

... difficulties arise—this thing gives out and [it is] then that "Bugs"—as such little
faults and difficulties are called—show themselves

UNIVERSITY of WASHINGTON

:;nds:i;:ttﬁ,gfsciences w 5 & Amp“ ULearn Al %eScience Institute

UNIVERSITY OF

OREGON

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

When tests fail: Debugging

> Where did the term come from?
— Grace Hopper, USN rear admiral, 1906-1992
— Two PhDs, developed the UNIVAC I, COBOL

w&__" Ge Ao sAais] 5,,\,” 7,‘_, w7
. 1947 5 l'.':b:‘.‘j- H-' h:? /{WWM') 05 7z /;h.J. ;
« Mark Il mechanical computer R L S
« Her team discovered a moth stuck in a relay R G
» The relay would not function until the moth was removed ~ *7 it Gt ’;'-._r-f}(z-}‘-_-w)
« Thus, a computer was “debugged” s R‘}g\"’n Cinil ¥
T el in Colag

= - ';'r-" ": :
} ‘ f al cazp L “n wA.
¥ 2y ;‘-....w BT A el 1{w :

s .y.,l Lt

IEndsLEE:tti%ngciences w E 5 Amp“ Ul_earn Al %gj)qF

Wikipedia

https://en.wikipedia.org/wiki/Grace_Hopper

When tests fail: Debugging

> Two types of debugging
— Print debugging

> Using print statements to inspect the state of your code

— Debugger based tools
> Using tooling to inspect the state of your code at run time

UNIVERSITY of WASHINGTON

:;nds:i;:ttﬁ,gfsciences w 5 & Amp“ ULearn Al %eScience Institute

UNIVERSITY OF

OREGON

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

When tests fail: Debugging

> Two types of debugging
— Print debugging

def add or multiply(op, a, b):
if op == “+”:
return a + b
else:
return a * b

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬂgg Institute - ()

UNIVERSITY OF

OREGON

When tests fail: Debugging

def add or multiply(op, a, b):
print(“add or multiply called”)
print (op)
print (a)
print (b)
if op == “+”7:
print (“we are adding”)
return a + b

else:
print (“we are multiplying”)
return a * b

IVERSITY OF

REGON

When tests fail: Debugging

def add or multiply(op, a, b):
print (“add or multiply called”)

print (op) >>> add or multiply(“+”, 0, 0)
. add or multiply called

print (a) P

print (b) g

lf Op —— “'I-": we are adding

print (“we are adding”)
return a + b
else:

print (“we are multiplying”) IVERSITY OF
return a * b REGON

When tests fail: Debugging

> Two types of debugging

— Print debugging

> Time consuming

def add or multiply(op, a, b):
if op == “+”:
return a + b
else:
return a * b

Insti f A . - :
Instituteof w i\\i AmplifyLearn.Al EiéeSaence Institute

def add or multiply(op, a, b):

print(“add or multiply called”)

print (op)

print (a)

print (b)

if op == “+”:
print (“we are adding”)
return a + b

else:
print (“we are multiplying”)
return a * b

UNIVERSITY of WASHINGTON
UNIVERSITY OF

OREGON

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

When tests fail: Debugging

> Two types of debugging

— Debugger based tools
> Using tooling to inspect the state of your code at run time

def add or multiply(op, a, b):
if op == “+”:
return a + b

else: CIVERSITY OF
return a * b REGON

= W bR

When tests fail: Debugging

> Two types of debugging

— Debugger based tools
> Using tooling to inspect the state of your code at run time

add or multiply(“/”, 0, 0)

D> def add or multiply(op, a, b):
if op == “+7:
return a + b

else : NIVERSITY OF
return a * b REGON

= W bR

When tests fail: Debugging Whatlineis

executed next?

> Two types of debugging
— Debugger based tools
> Using tooling to inspect the state of your code at run time

add or multiply(“/”, 0, 0)

def add or multiply(op, a, b): Zarl_ab\lii
»1. if op == “+”.: P
a=2=0
2. return a + b b = 0
3 L4 else : NIVERSITY OF
4. return a * b)REGON

When tests fail: Debugging Whatlineis

executed next?

> Two types of debugging
— Debugger based tools
> Using tooling to inspect the state of your code at run time

add or multiply(“/”, 0, 0)

def add or multiply(op, a, b): Zar'_ab\lii
1. if op == “+”: P
a=2=0
2. return a + b
b=20
»3. else:

NIVERSITY OF

4 . return a * b JREGON

D>

When tests fail: Debugging Whatlineis

executed next?

> Two types of debugging
— Debugger based tools
> Using tooling to inspect the state of your code at run time

add or multiply(“/”, 0, 0)

def add or multiply(op, a, b): Zarl_ab\lii
1. if op == “+7: P
a=20
2. return a + b b = 0
3 L4 else : NIVERSITY OF
4. return a * b)REGON

When tests fail: Debugging

> Two types of debugging
— Print debugging

> Using print statements to inspect the state of your code
> Easy at first, slow and difficult later
— Debugger based tools
> Using tooling to inspect the state of your code at run time
> Hard at first, easy and fast later

> Career progression in SDE will require Debugger skill

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %Sﬁﬂﬁﬂ&i Institute O

UNIVERSITY OF

OREGON

Overview of today

1. Review of last week
1. Users and their stories inform design
2. Use cases describe the function of software

2. Components implement the use cases
3. Testing and testing strategies

4, Debugging

5. Continuous integration

UNIVERSITY of WASHINGTON

Insti f =4 . . 2
Fiscaton ssiences W L2 AmplifyLearn Al “@% eScience Insfitute ()

UNIVERSITY OF

OREGON

What is continuous software testing?

add(a, b)
multiply(a, b)

In version 2, we want to support complex numbers. How
can we be sure that our changes don't break things?

“Continuous integration” or continuously integrating
new code into your software after testing.

The tests pass and the code is “accepted” as working

} Version 1 of our simple math library

UNIVERSITY of WASHINGTON

Institute of A . - '
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬁg Institute - ()

UNIVERSITY OF

OREGON

https://en.wikipedia.org/wiki/Complex_number

Homework for next week

> Thinking about your assignment and homework for Session 2, can you

— ldentify a software component for the design you proposed last week
> Can you subdivide the component?
> Why or why not?
— Describe, using the standard types of tests introduced, the testing challenges and
strategies you might opt to employ for that component
> Are there pattern tests available? Are you sure? Really?
> What edge tests are appropriate?

UNIVERSITY of WASHINGTON

IEndsL’:E:ttﬁ’ngCiences w E =3 Amp“ ULearn Al %eSCience Institute

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

UNIVERSITY OF

OREGON

	Slide 1: Software (design) for Data Scientists ISEA Session 3 David Beck University of Washington 2.7.2024
	Slide 2: Questions
	Slide 3: Overview of last week and today
	Slide 4: Design & testing fails
	Slide 5: What makes a design understandable?
	Slide 6: Running Example: Design of ATM
	Slide 7: Start by writing a user story
	Slide 8: Start by writing a user story
	Slide 9: Start by writing a user story
	Slide 10: Use Cases
	Slide 11: How to find use cases? In the user stories!
	Slide 12: What do we do with ATMs?
	Slide 13: Describing a Use Case (one way)
	Slide 14: Describing a Use Case (Check Balance)
	Slide 15: Describing a Use Case (Authentication)
	Slide 16: Component Design
	Slide 17: What is a component?
	Slide 18: Developing component specifications
	Slide 19: Specification of a component
	Slide 20: Identify shared components
	Slide 21: Identify shared components
	Slide 22: Overview of today
	Slide 23: Identify components for a Use Case
	Slide 24
	Slide 25: ATM components by Use Case
	Slide 26: Specify components
	Slide 27
	Slide 28: Specify components
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Steps in Design1
	Slide 33: Overview of today
	Slide 34: Component specifications get you to code
	Slide 35: Code Review Template
	Slide 36: Code Review Template
	Slide 37: Component specifications get you to code
	Slide 38: What is software testing?
	Slide 39: What is software testing?
	Slide 40: What is software testing?
	Slide 41: What is software testing?
	Slide 42: What is software testing?
	Slide 43: Some “types” of testing
	Slide 44: Some “types” of testing
	Slide 45: Some “types” of testing
	Slide 46: Some “types” of testing
	Slide 47: Some “types” of testing
	Slide 48: Some “types” of testing
	Slide 49: How many tests for each component?
	Slide 50: What is code coverage?
	Slide 51: What is code coverage?
	Slide 52: What is code coverage?
	Slide 53: What is code coverage?
	Slide 54: What is code coverage?
	Slide 55: What is code coverage?
	Slide 56: Is code coverage alone enough?
	Slide 57: Testing is hard! Testing is fun!
	Slide 58: Testing is only as good as your imagination!
	Slide 59: What does this look like in files?
	Slide 60: What does this look like in files?
	Slide 61: What does this look like in projects?
	Slide 62: What does this look like in real projects?
	Slide 63: What does this look like in day to day?
	Slide 64: What does this look like in day to day?
	Slide 65: Testing is highly automated with tooling
	Slide 66: Testing can be a big lift for large software
	Slide 67: Test-driven development
	Slide 68: Test-driven development
	Slide 69: Test-driven development
	Slide 70: Test-driven development
	Slide 71: Test-driven development
	Slide 72: Overview of today
	Slide 73: When tests fail: Debugging
	Slide 74: When tests fail: Debugging
	Slide 75: When tests fail: Debugging
	Slide 76: When tests fail: Debugging
	Slide 77: When tests fail: Debugging
	Slide 78: When tests fail: Debugging
	Slide 79: When tests fail: Debugging
	Slide 80: When tests fail: Debugging
	Slide 81: When tests fail: Debugging
	Slide 82: When tests fail: Debugging
	Slide 83: When tests fail: Debugging
	Slide 84: When tests fail: Debugging
	Slide 85: When tests fail: Debugging
	Slide 86: Overview of today
	Slide 87: What is continuous software testing?
	Slide 88: Homework for next week

