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Questions

> For 2025, is there a better example than an ATM?

> Yours?
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Overview of last week and today

1 . ReVieW Of IaSt Week User stories
1. Users and their stories inform design l
2. Use cases describe the function of software Use cases
. (functional design)
2. Components implement the use cases l
3. Testing and testing strategies Component design

4, Debugging
5. Continuous integration
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Design & testing fails 7& AECL

> Therac-25
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Atomic Energy of Canada Limited (AECL)

Built in 1982, 6 accidents from 1985-1987 Q&= . o
Design did not specify what limits were set in hardware VS.
software (why not both?!?!)

Patients were hit with 100x intended radiation dose (50% fatal)

Error handling was a mess
> “Oh Error-54 occurred again? I'll just clear it.”

AECL had never tested the Therac-25 with the combination of
software and hardware until it was assembled at the hospital.
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What makes a de5|gn understandable”
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Few components with clear roles

Few interactions between components Simple where
Carefully choose the features and interfaces possible is better
Similarity with other designs

Uses design patterns (user interfaces, parallel computing, message
observers, ...)
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Running Example' De5|gn of ATM
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Start by writing a user story

Who is the user. What do they want to do with the tool.

What needs and desires do they want for the tool.
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Start by writing a user story

Ram is a bank customer.
Ram

wants a safe and secure interface for interacting with
the ATM.
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Start by writing a user story

>

How are Ram and Asma the same?

How are Ram and Asma different?

Ram is a bank customer. Ram wants to
check his balance, deposit money. He
rarely uses cash. Ram wants a safe and
secure interface for interacting with the
ATM. Ram'’s job does not involve
technical skills and he values a simple
user interface.

Asma is a bank customer. Asma wants to
check her balance and take out cash. She
uses auto-deposit for her paychecks. She
wants a safe and secure interface for
interacting with the ATM. Asma is quite
technical, but she wants to minimize her
time interacting with the ATM and values a
simple interface

What are the key takeaways from their user stories?
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Use Cases

Functional Design
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How to find use cases? In the user stories!

IRl e Ram wants to check his

He rarely uses cash. Ram
wants a safe and secure interface for interacting with
the ATM. Ram'’s job does not involve technical skills and
he values a simple user interface.

 Check balances
* Deposit checks
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What do we do with ATMs?

> Check balances
> Deposit checks
> Get cash } Asma

1» Ram and Asma

> These are examples of Use Cases.
> They describe the functional potential of software.
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Describing a Use Case (one way)

> What are the inputs and what are the outputs?

> Adding two numbers

— Inputs: two numbers
— Outputs: one number, the sum of the two inputs

— Can we add more detail? What kind of numbers? Positive
and negative?
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Describing a Use Case (Check Balance)

> What are the inputs and what are the outputs?

> Check balance
— Input: User selects an account
— Output: ATM displays the current account balance

— The account information is looked up in the account
database and the current balance is retrieved.
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Describing a Use Case (Authentication)

> What information the user provides (inputs)

> What responses the system provides (outputs)
Authenticate User Use Case

User: Put ATM card in reader

ATM: Display 'Enter PIN'

User: Enters PIN on keyboard

ATM: [if correct] Show main menu
[if incorrect] Display 'Enter PIN'
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Component
Design
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What is a component?

VvV V V V VvV V

Software (or other kinds) components “do the work”
Components store data

Components calculate values

Components “interact” with each other
Components “interact” with the user

Components can be functions, databases, interfaces,
external web sites, ..
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Developing component specifications

1. Use case by use case: what are the components
required for this use case?

2. Are those components used for another use case?
— Good, we can reuse them!

3. Can the component be further divided in complexity for
sub-components?
— Good, we can simplify them!
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Specification of a component

> Describe components with sufficient detail so that
someone with modest knowledge of the project can
implement the code for the component.
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Name

What it does

Inputs (with type information)
Outputs (with type information)
How it uses other components
Side effects
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Identify shared components

> Authenticate user > Check balance
— Database with user info including ATM card # and PIN — Database with user info including account balances
— Card reader that reads ATM card — User interface that reads account selection
— User interface that shows information (80x24) — User interface that shows information (80x24)
— User interface that reads user PIN — Check balance control logic

— Authenticate control logic

> User interface (output)?
> User interface (input)?

> Database?
> Control logic?
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Identify shared components

> Authenticate user

Database with user info including ATM card # and PIN -
Card reader that reads ATM card -
User interface that shows information (80x24) -
User interface that reads user PIN -
Authenticate control logic

> Check balance

Database with user info including account balances
User interface that reads account selection

User interface that shows information (80x24)
Check balance control logic

User interface (output)? Yes!

User interface (input)? Yes!

Database?
Control logic? No!
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Overview of today

1. Review of last week
1. Users and their stories inform design
2. Use cases describe the function of software

2. Components implement the use cases
3. Testing and testing strategies

4. Debugging

5. Continuous integration

UNIVERSITY of WASHINGTON

Institute of s, . : -
é‘dsuL:tii}g Sciences w ‘g‘__ji Am p |~| fg I—ea m 'Al % S/ECSGI STATHECNsweVE D||52v§z!|LtA?th O

UNIVERSITY OF

OREGON




Identify components for a Use Case

> Some use cases appear to only have one component

— Use case “add numbers”
Adding two numbers
— Inputs: two numbers
— Outputs: one number, the sum of the two inputs

— What components are necessary?
> “Add numbers function”
> QOthers?
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— Name

— What it does

— Inputs (with type information)
— Outputs (with type information)

o
SpeCIfy a component — How it uses other components

— Side effects

Name: Add numbers function
What it does:

— Computes the sum of two numbers. The numbers can be integers or numbers with decimals.
They may be positive or negative.

Inputs (with type information)
— @0, a number which can be an integer, decimal, positive & negative, must be finite and real
— b, a number which can be an integer, decimal, positive & negative, must be finite and real

Outputs (with type information)
— sum, a number (integer, decimal, positive, negative, finite, real) that is the sum of a and b

Components used: None.
Side effects: None.



ATM components by Use Case

> Authenticate user
— Database with user info including ATM card # and PIN
— Card reader that reads ATM card
— User interface that shows information (80x24)
— User interface that reads user PIN

— Authenticate control logic
> What is this? %
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Name

What it does

Inputs (with type information)
Outputs (with type information)
How it uses other components
Side effects

Specify components

> Authenticate user control logic

> Take 2-3 minutes to sketch out a specification for
the authenticate user control logic component.
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— Name

— What it does

— Inputs (with type information)
— Outputs (with type information)

°
SpeCIfy compﬂnents — How it uses other components

— Side effects

Name: Authenticate user control logic

What it does:

— Verifies a user is in the database and that the PIN supplied by the user matches the PIN in the
database

Inputs (with type information)
— Card number, a string that is the user’s card number
— PIN, an integer

Outputs (with type information)
— Boolean: True if success, False if failure

Components used: ATM card reader supplies Card number input, user inputs PIN via keypad, verification is
performed by database

Side effects: if successful, all other bank customer use cases are enabled for the User matching the Card number.



Name

What it does

Inputs (with type information)
Outputs (with type information)
How it uses other components
Side effects

Specify components

> Check balance control logic

> Take 2-3 minutes to sketch out a specification for
the check balance control logic component.
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— Name

— What it does

— Inputs (with type information)
— Outputs (with type information)

°
SpeCIfy COmpﬂnentS — How it uses other components

— Side effects

Name: Check balance control logic
What it does:

— Looks up a user's account that they provided in the account database and returns the current
balance associated with that account in the database.

Inputs (with type information)
— Account number, a string that is the user’s account number

Outputs (with type information)

— False if account does not exist or a floating-point number equal to the account balance

Com ponents used: user selects an Account Number shown on the display with keypad input and the verification and
balance lookup is provided by the database

Side effects: None.


https://en.wikipedia.org/wiki/Floating-point_arithmetic

Digression: Card number as a string?

> Bank card number, e.g.
— 553412341234 1234

> Should / could this be a number? ... a - vss31123412321232"

>>> b = 5534123412341234

> Should / could this be a string? >>> len(a)

16

— Test for equality 2> len(®)

— Use the Ord|na||ty7 TypeError: object of type 'int' has
no len()

— Test for number of digits
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— Name

— What it does

— Inputs (with type information)
— Outputs (with type information)

°
SpeCIfy components — How it uses other components

— Side effects

Name: Check balance control logic
What it does:

— Looks up a user's account that they provided in the account database and returns the current
balance associated with that account in the database.

Inputs (with type information)
— Account number, a string that is the user’s account number

Outputs (with type information)

— False if account does not exist or a floating-point number equal to the account balance

Com ponents used: user selects an Account Number shown on the display with keypad input and the verification and
balance lookup is provided by the database

Side effects: Erases the current content on the user facing display.


https://en.wikipedia.org/wiki/Floating-point_arithmetic

-

— ——
. e 1 Iterate. Iterate. Iterate.
Steps in Design T

=
1. Identify the users and their needs

2. Functional design
— Describe what the system does (use cases)

3. Component design

— Components are the “software artifacts” that implement the
specific features of the use cases

— Components are often hierarchical and reused

1. There are many paradigms of software design. This is one. It is focused on humans.
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Overview of today

1. Review of last week
1. Users and their stories inform design
2. Use cases describe the function of software

2. Components implement the use cases
3. Testing and testing strategies

4. Debugging

5. Continuous integration
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Component specifications get you to code

> Code needs review
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Code Review Template

. Dispassionate third party * Background

— Tour of the code with — Describe what the application does
necessary context — Describe the role of the code being
— Improving code quality and reviewed
find bugs with questions « Comment or question
— “Why did you call this variable _ . . :
snuffleupagus when it stores the Choice of variable and function names
average grade?” — Readability of the code
— “This code is repeated, can it be a . . .
function?” — How improve reuse and efficiency
~ "Whatis happening HEREZ!12" — How use external software packages
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Code Review Template

. Dispassionate third party * Background

— Tour of the code with — Describe what the application does
necessary context — Describe the role of the code being
— Improving code quality and reviewed
find bugs with questions « Comment or question
S — Choice of variable and function names
Assume B — Readability of the code
gOOd Wl ” &‘QQ — How improve reuse and efficiency
~—” — How use external software packages
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Component specifications get you to code

> (Code needs review
> (Code needs testing

> Has this happened to you:
— You wrote some code. It works! You are happy.

— You add a neat little feature. You think it works. You are happy.
— ltdoesn't wo rk, You found out before anything bad happened.
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What is software testing?

> Code that checks if other code (code under test) is
working properly

> |f the “code under test”

— Runs successfully
— Fails gracefully (as expected, when expected)

> The tests pass and the code is "accepted” as working
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What is software testing?

def code under test(a, b):
return a + b

What is the code under test?
What is the code under test doing?
Could we name the code under test function better?
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What is software testing?

if add(0, 0) ==
def add(a, b): return True

return a + b else:
return False

What is a test we can do for add?
Is this sufficient? Why or why not?
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What is software testing?

if add(0, 1) ==
def add(a, b): return True

return a + b else:
return False

Can we test a different a, b pair?
Is this sufficient? if add(0, 2) ==
return True
else:
return False
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What is software testing?
for i in range(10):
def add(a, b): if add(0, i) !'= i:

return a + b return False

Can we test many a, b pairs?
s this sufficient?

Testing is hard! Testing is FUN!
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Some ‘“types” of testing

> “Smoke” testing

— Does it “catch fire and burn” when you try to run the “code

under test”
— Most basic, limited information about system

Code under test Test code

def add(a, b): add (0, 0)
return a + b
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Some ‘“types” of testing

> "One-shot” testing

— Does the code under test perform correctly for a specific set of
inputs
— Tests the correctness of code

Code under test Test code
def add(a, b): if add(0, 0) ==
return True

return a + b
else:

- return False
v W ZE AmpligLeam Al *gfesovence mmve Q) | GREGON



Some ‘“types” of testing

> “Pattern” testing

— Does the code under test perform correctly for a pattern of
input cases

— Tests the correctness of code across a range of inputs

Code under test Test code
def add(a, b): for 1 in range(10):
if add(0, 1) '= i:
return False

return True
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Some ‘“types” of testing

> "“Edge” testing
— Does the code under test perform correctly for invalid and
“special” inputs
— Tests the error handling and “singular” value handling

Code under test Test code
def add(a, b): if add(“4”, 0) !'= 0:
return True

return a + b
else:

- return False
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Some ‘“types” of testing

“Edge” testing
— Does the code under test perform correctly for invalid and
“special” inputs
— Tests the error handling and “singular” value handling

Code under test Test code

def add(a, b): assertRaises (TypeError,

return a + b add (“47, 0))
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Some ‘“types” of testing
“Smoke” test

— Calling the code under test to see if it “catches fire”

> “One-shot” test

— Calling the code under test with known inputs expecting specific outputs
> “Pattern” test

— Calling the code under test with a pattern of known inputs expecting a pattern of outputs

> “Edge” test

— Calling the code under test in “edge cases” and in predefined failure
modes to make sure it fails gracefully. FUN!

> These names are for our convenience.
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How many tests for each component?

> There is no magic number

> Patterns > One-shot > Smoke
— Not all tests offer the same “value” in testing
— Patterns reveal more possible failure modes

> Number of tests is less important than code coverage

Test coverage and code coverage is an

important concept in software engineering

and can make and break job interviews.
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What is code coverage?

> Fraction (%) of lines of code “exercised” by a test
— How many lines in add?
— What percentage of those lines are executed by our test?
100% (1 of 1 lines of add were executed)

Code under test Test code

def add(a, b): add (0, 0)
return a + b
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What is code coverage?

> Fraction (%) of lines of code “exercised” by a test

— What percentage of those lines are executed by our test?
100% (1 of 1 lines of add were executed)

Code under test Test code
def add(a, b): if add(0, 0) ==
return a + b return True
else:

- return False
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What is code coverage?

> Fraction (%) of lines of code “exercised” by a test

— What percentage of those lines are executed by our test?
100% (1 of 1 lines of add were executed)

Code under test Test code
def add(a, b): for 1 in range(10):
if add(0, 1) '= i:
return False

return True
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What is code coverage?

Code under test

def add or multiply(op, a, b):

if op == “+”:
return a + b
else:
return a * b

Test code

if add or multiply(“+”, 0, 1) != 1:
return False

Code coverage?
50%

)
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What is code coverage?

Code under test

def add or multiply(op, a, b):

if op == “+”:
return a + b
else:
return a * b

Test code

if add or multiply(“*”, 0, 1) != 0:
return False

Code coverage?
75%

)
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What is code coverage?

Code under test

def add or multiply(op, a, b):

= W N

if op == “+":
return a + b
else:
return a * b Code coverage?
Test code 100%
if add or multiply(“+”, 0, 1) != 0:
return False
if add or multiply(“*”, 0, 1) != 0: ) 8ﬁg&%§

return False



Is code coverage alone enough?

Code under test

def add or multiply(op, a, b):

= W N

if op == “+”:
return a + b
else:
return a * b Code coverage?
Test code 100%
if add or multiply(“+”, 0, 1) != 0:
return False
if add or multiply(“/”, 0, 1) == 0: ) 8ﬁg&%§

return False



Testing is hard! Testing is fun!

> Mode of thinking: How can | break this?

> Want to get better?
— Practicel!

> “Software engineer in test” is a specific job
— Software development engineering in test (SDET)
— U.S. Bureau of Labor Statistics predicts > 25% job growth
— Pathway to a Software Development Engineer
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https://www.bls.gov/

Testing is only as good as your imagination!

> “Software engineer in test” is a specific job
— Software tester walks into a bar...
— Software tester run into a bar...
— Software tester crawls into a bar...
— Software tester walks into a bar and orders a drink...
— Software tester runs into a bar and orders a drink...
— Software tester crawls into a bar and orders a drink...

— User walks into a bar and asks for the bathroom.
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What does this look like in files?

> One source file for code, one source file for tests
— math.py has an accompanying test math.py

math.py test_math.py
def add(a, b): def test_add():

def multiply(a, b): def test_multiply():

\/ \/-
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What does this look like in files?

math.py test_math.py
def add(a, b): def test_add():
return a+b

def multiply(a, b):

\/—

Institute of
Education Sciences

def test_multiply():

s

—

w E =3 Amp“ ULearn Al %GSCience |nSﬁfUte

r-def test add():

for i1 in range(10):
assert add(0, 1) == 1
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What does this look like in projects?

my_project/

/\tést/
T

math.py test_math.py
def add(a, b): def test_add():
return a+b

def multiply(a, b): def test_multiply():

\_/ \/-
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What does this look like in real projects?

my_project/

-

math.py student.py test_math.py test_student.py
def add(a, b): def lookup(id): def test_add(): def test_lookup():
return a+b

def multiply(a, b): ||def score(id, ans) def test_multiply(): def test_score():

UNIVERSITY of WASHINGTON
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What does this look like in day to day?

> After each change to a function or file (e.g. math.py)

my_project/

— Rerun the tests (test math.py) i

- —
test_math.py test_student.py

def test_add(): def test_lookup():

def test_multiply(): def test_score():

— Do we need to run all tests?
Yes!

nnnnnnnnn
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What does this look like in day to day?

> After each change to a function or file (e.g. math.py)

— Rerunthe tests (test math.py)

— —
test_math.py test_student.py

def test_add(): def test_lookup():

ef test_multiply(): def test_score():

— Do we need to run all tests?
> The design should tell us
> Component specification includes component interactions
> Component specification includes side effects
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Testing is highly automated with tooling

> After each change to a function or file (e. g math oY)

uuuuuuuuu

— Rerun the tests (test _ma th.py —
— — T
math.py student.py test_math.py test_student.py
def add(a, b): def lookup(id, def test_add| def test_lookup|
return a+b .

— Do we need to run all tests?
> |f components inmath.py call components in student.py, yes
> |f components in student.py call componentsin math.py, yes
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Testing can be a big lift for large software

> After each change to a function or file (e.g. math.py)
— Rerun all the tests (test math.py, test student py)

yyyyyyyyy

— Testing is automated, so run them all

— Big software projects
> Testing can be expensive (money & time)
> Automated tests can be run 100s of times a day
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Test-driven development

>

Testing is automated
— pytest, nosetest, python —m unittest

Tests can be written from component specifications
Tests can be written without “code under test”
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Test-driven development

> Tests can be written without “code under test”

Code under test

Test code Test code output
def test add(): >>> test add()
for i in range(10): [...]
assert add (0, i) == i NameError: name 'add'

is not defined
Eaucation Sciences WY 22, AmplifyLearn.A %gﬁﬂgﬁg Institute - ()
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Test-driven development

> Tests can be written with empty “code under test”

Code under test

def add(a, b):

Pass Do nothing, take no action, no operation, return None

Test code Test code output
def test add(): >>> test add()
for i in range(10): [...]
assert add (0, i) == i AssertionError
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Test-driven development

> Tests can be written to drive writing “code under test”

Code under test

def add(a, b):
return a + b

Test code Test code output
def test add(): >>> test add()
for i in range(10): >>>
assert add (0, i) == 1 No errors so a success
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Test-driven development

> Tests are written against the component specification
> All components are implemented as ‘pass’
> All tests: Get el e
— FAIL!
> Write code until all tests pass

> Release software bug free!
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Overview of today

1. Review of last week
1. Users and their stories inform design
2. Use cases describe the function of software

2. Components implement the use cases
3. Testing and testing strategies

4. Debugging

5. Continuous integration
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When tests fail: Debugging

> What s a bug?

— “Asoftware bug is an error, flaw, failure, or fault in a computer program
or system that causes it to produce an incorrect or unexpected result, or
behave in unintended ways.” - Wikipedia

> Where did the term come from?
— Thomas Edison (1878, letter to associate) - Wikipedia

... difficulties arise—this thing gives out and [it is] then that "Bugs"—as such little
faults and difficulties are called—show themselves
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When tests fail: Debugging

> Where did the term come from?
— Grace Hopper, USN rear admiral, 1906-1992
— Two PhDs, developed the UNIVAC I, COBOL

w&__" Ge Ao sAais] 5,,\,” 7,‘_, w7
. 1947 5 l'.':b:‘.‘j- H-' h:? /{WWM') 05 7z /;h.J. ;
« Mark Il mechanical computer R L S
« Her team discovered a moth stuck in a relay R G
»  The relay would not function until the moth was removed ~ *7 it Gt ’;'-._r-f}(z-}‘-_-w)
« Thus, a computer was “debugged” s R‘}g\"’n Cinil ¥
T el in Colag

= - ';'r-" ": :
} ‘ f al cazp L “n wA.
¥ 2y ;‘-....w BT A el 1{w :

s .y.,l Lt

IEndsLEE:tti%ngciences w E 5 Amp“ Ul_earn Al %gj )qF

Wikipedia


https://en.wikipedia.org/wiki/Grace_Hopper

When tests fail: Debugging

> Two types of debugging
— Print debugging

> Using print statements to inspect the state of your code

— Debugger based tools
> Using tooling to inspect the state of your code at run time
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When tests fail: Debugging

> Two types of debugging
— Print debugging

def add or multiply(op, a, b):
if op == “+”:
return a + b
else:
return a * b
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When tests fail: Debugging

def add or multiply(op, a, b):
print(“add or multiply called”)
print (op)
print (a)
print (b)
if op == “+”7:
print (“we are adding”)
return a + b

else:
print (“we are multiplying”)
return a * b

IVERSITY OF
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When tests fail: Debugging

def add or multiply(op, a, b):
print (“add or multiply called”)

print (op) >>> add or multiply(“+”, 0, 0)
. add or multiply called

print (a) P

print (b) g

lf Op —— “'I-": we are adding

print (“we are adding”)
return a + b
else:

print (“we are multiplying”) IVERSITY OF
return a * b REGON



When tests fail: Debugging

> Two types of debugging

— Print debugging

> Time consuming

def add or multiply(op, a, b):
if op == “+”:
return a + b
else:
return a * b

Insti f A . - :
Instituteof w i\\i AmplifyLearn.Al EiéeSaence Institute

def add or multiply(op, a, b):

print(“add or multiply called”)

print (op)

print (a)

print (b)

if op == “+”:
print (“we are adding”)
return a + b

else:
print (“we are multiplying”)
return a * b
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When tests fail: Debugging

> Two types of debugging

— Debugger based tools
> Using tooling to inspect the state of your code at run time

def add or multiply(op, a, b):
if op == “+”:
return a + b

else: CIVERSITY OF
return a * b REGON
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When tests fail: Debugging

> Two types of debugging

— Debugger based tools
> Using tooling to inspect the state of your code at run time

add or multiply(“/”, 0, 0)

D> def add or multiply(op, a, b):
if op == “+7:
return a + b

else : NIVERSITY OF
return a * b REGON

= W bR



When tests fail: Debugging  Whatlineis

executed next?

> Two types of debugging
— Debugger based tools
> Using tooling to inspect the state of your code at run time

add or multiply(“/”, 0, 0)

def add or multiply(op, a, b): Zarl_ab\lii
»1. if op == “+”.: P
a=2=0
2. return a + b b = 0
3 L4 else : NIVERSITY OF
4. return a * b )REGON



When tests fail: Debugging  Whatlineis

executed next?

> Two types of debugging
— Debugger based tools
> Using tooling to inspect the state of your code at run time

add or multiply(“/”, 0, 0)

def add or multiply(op, a, b): Zar'_ab\lii
1. if op == “+”: P
a=2=0
2. return a + b
b=20
»3. else:

NIVERSITY OF

4 . return a * b JREGON



D>

When tests fail: Debugging  Whatlineis

executed next?

> Two types of debugging
— Debugger based tools
> Using tooling to inspect the state of your code at run time

add or multiply(“/”, 0, 0)

def add or multiply(op, a, b): Zarl_ab\lii
1. if op == “+7: P
a=20
2. return a + b b = 0
3 L4 else : NIVERSITY OF
4. return a * b )REGON



When tests fail: Debugging

> Two types of debugging
— Print debugging

> Using print statements to inspect the state of your code
> Easy at first, slow and difficult later
— Debugger based tools
> Using tooling to inspect the state of your code at run time
> Hard at first, easy and fast later

> Career progression in SDE will require Debugger skill
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Overview of today

1. Review of last week
1. Users and their stories inform design
2. Use cases describe the function of software

2. Components implement the use cases
3. Testing and testing strategies

4, Debugging

5. Continuous integration
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What is continuous software testing?

add(a, b)
multiply(a, b)

In version 2, we want to support complex numbers. How
can we be sure that our changes don't break things?

“Continuous integration” or continuously integrating
new code into your software after testing.

The tests pass and the code is “accepted” as working

} Version 1 of our simple math library
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https://en.wikipedia.org/wiki/Complex_number

Homework for next week

> Thinking about your assignment and homework for Session 2, can you

— ldentify a software component for the design you proposed last week
> Can you subdivide the component?
> Why or why not?
— Describe, using the standard types of tests introduced, the testing challenges and
strategies you might opt to employ for that component
> Are there pattern tests available? Are you sure? Really?
> What edge tests are appropriate?
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