
Software (design)
for Data Scientists
ISEA Session 3

David Beck
University of Washington
2.7.2024

> For 2025, is there a better example than an ATM?

> Yours?

Questions

Overview of last week and today

1. Review of last week
1. Users and their stories inform design

2. Use cases describe the function of software

2. Components implement the use cases

3. Testing and testing strategies

4. Debugging

5. Continuous integration

User stories

Use cases

(functional design)

Component design

Design & testing fails

> Therac-25
– Built in 1982, 6 accidents from 1985-1987

– Design did not specify what limits were set in hardware vs.
software (why not both?!?!)

– Patients were hit with 100x intended radiation dose (50% fatal)

– Error handling was a mess

> “Oh Error-54 occurred again? I’ll just clear it.”

– AECL had never tested the Therac-25 with the combination of
software and hardware until it was assembled at the hospital.

Atomic Energy of Canada Limited (AECL)

https://en.wikipedia.org/wiki/Therac-25

• Few components with clear roles

• Few interactions between components

• Carefully choose the features and interfaces

• Similarity with other designs

• Uses design patterns (user interfaces, parallel computing, message
observers, …)

What makes a design understandable?

Simple where

possible is better

Running Example: Design of ATM

Who is the user. What do they want to do with the tool.
What needs and desires do they want for the tool.
What is their skill level.

Start by writing a user story

Ram is a bank customer. Ram wants to check his
balance, deposit money. He rarely uses cash. Ram
wants a safe and secure interface for interacting with
the ATM. Ram’s job does not involve technical skills and
he values a simple user interface.

Start by writing a user story

> How are Ram and Asma the same?

> How are Ram and Asma different?

> What are the key takeaways from their user stories?

Start by writing a user story
Ram is a bank customer. Ram wants to

check his balance, deposit money. He

rarely uses cash. Ram wants a safe and

secure interface for interacting with the

ATM. Ram’s job does not involve

technical skills and he values a simple

user interface.

Asma is a bank customer. Asma wants to

check her balance and take out cash. She

uses auto-deposit for her paychecks. She

wants a safe and secure interface for

interacting with the ATM. Asma is quite

technical, but she wants to minimize her

time interacting with the ATM and values a

simple interface

Use Cases

Functional Design

Ram is a bank customer. Ram wants to check his
balance, deposit money. He rarely uses cash. Ram
wants a safe and secure interface for interacting with
the ATM. Ram’s job does not involve technical skills and
he values a simple user interface.

How to find use cases? In the user stories!

• Check balances

• Deposit checks

> Check balances

> Deposit checks

> Get cash

> These are examples of Use Cases.

> They describe the functional potential of software.

What do we do with ATMs?

Ram and Asma

Asma

> What are the inputs and what are the outputs?

> Adding two numbers
– Inputs: two numbers

– Outputs: one number, the sum of the two inputs

– Can we add more detail? What kind of numbers? Positive
and negative?

Describing a Use Case (one way)

> What are the inputs and what are the outputs?

> Check balance
– Input: User selects an account

– Output: ATM displays the current account balance

– The account information is looked up in the account
database and the current balance is retrieved.

Describing a Use Case (Check Balance)

> What information the user provides (inputs)

> What responses the system provides (outputs)

Describing a Use Case (Authentication)

User: Put ATM card in reader

ATM: Display 'Enter PIN'

User: Enters PIN on keyboard

ATM: [if correct] Show main menu

[if incorrect] Display 'Enter PIN'

Authenticate User Use Case

Component
Design

> Software (or other kinds) components “do the work”

> Components store data

> Components calculate values

> Components “interact” with each other

> Components “interact” with the user

> Components can be functions, databases, interfaces,
external web sites, ..

What is a component?

1. Use case by use case: what are the components
required for this use case?

2. Are those components used for another use case?
– Good, we can reuse them!

3. Can the component be further divided in complexity for
sub-components?
– Good, we can simplify them!

Developing component specifications

> Describe components with sufficient detail so that
someone with modest knowledge of the project can
implement the code for the component.
– Name

– What it does

– Inputs (with type information)

– Outputs (with type information)

– How it uses other components

– Side effects

Specification of a component

Identify shared components

> User interface (output)?

> User interface (input)?

> Database?

> Control logic?

> User interface (output)? Yes!

> User interface (input)? Yes!

> Database? After subcomponents.

> Control logic? No!

Identify shared components

Overview of today

1. Review of last week
1. Users and their stories inform design

2. Use cases describe the function of software

2. Components implement the use cases

3. Testing and testing strategies

4. Debugging

5. Continuous integration

> Some use cases appear to only have one component
– Use case “add numbers”

Adding two numbers

– Inputs: two numbers

– Outputs: one number, the sum of the two inputs

– What components are necessary?

> “Add numbers function”

> Others?

Identify components for a Use Case

Name: Add numbers function

What it does:
– Computes the sum of two numbers. The numbers can be integers or numbers with decimals.

They may be positive or negative.

Inputs (with type information)
– a, a number which can be an integer, decimal, positive & negative, must be finite and real

– b, a number which can be an integer, decimal, positive & negative, must be finite and real

Outputs (with type information)
– sum, a number (integer, decimal, positive, negative, finite, real) that is the sum of a and b

Components used: None.

Side effects: None.

Specify a component

> Authenticate user
– Database with user info including ATM card # and PIN

– Card reader that reads ATM card

– User interface that shows information (80x24)

– User interface that reads user PIN

– Authenticate control logic

> What is this?

ATM components by Use Case

1. https://www.deviantart.com/love-rainbowflower/art/Magic-Happens-Here-lineart-292524154

1

> Authenticate user control logic

> Take 2-3 minutes to sketch out a specification for
the authenticate user control logic component.

Specify components

Name: Authenticate user control logic

What it does:
– Verifies a user is in the database and that the PIN supplied by the user matches the PIN in the

database

Inputs (with type information)
– Card number, a string that is the user’s card number

– PIN, an integer

Outputs (with type information)
– Boolean: True if success, False if failure

Components used: ATM card reader supplies Card number input, user inputs PIN via keypad, verification is

performed by database

Side effects: If successful, all other bank customer use cases are enabled for the User matching the Card number.

Specify components

> Check balance control logic

> Take 2-3 minutes to sketch out a specification for
the check balance control logic component.

Specify components

Name: Check balance control logic

What it does:
– Looks up a user's account that they provided in the account database and returns the current

balance associated with that account in the database.

Inputs (with type information)
– Account number, a string that is the user’s account number

Outputs (with type information)
– False if account does not exist or a floating-point number equal to the account balance

Components used: User selects an Account Number shown on the display with keypad input and the verification and

balance lookup is provided by the database

Side effects: None.

Specify components

https://en.wikipedia.org/wiki/Floating-point_arithmetic

Digression: Card number as a string?

> Bank card number, e.g.
– 5534 1234 1234 1234

> Should / could this be a number?

> Should / could this be a string?
– Test for equality

– Use the ordinality?

– Test for number of digits

>>> a = "5534123412341234"

>>> b = 5534123412341234

>>> len(a)

16

>>> len(b)

[…]

TypeError: object of type 'int' has

no len()

Name: Check balance control logic

What it does:
– Looks up a user's account that they provided in the account database and returns the current

balance associated with that account in the database.

Inputs (with type information)
– Account number, a string that is the user’s account number

Outputs (with type information)
– False if account does not exist or a floating-point number equal to the account balance

Components used: User selects an Account Number shown on the display with keypad input and the verification and

balance lookup is provided by the database

Side effects: None.

Specify components

Erases the current content on the user facing display.

https://en.wikipedia.org/wiki/Floating-point_arithmetic

1. Identify the users and their needs

2. Functional design
– Describe what the system does (use cases)

3. Component design
– Components are the “software artifacts” that implement the

specific features of the use cases

– Components are often hierarchical and reused

Steps in Design1 Iterate. Iterate. Iterate.

1. There are many paradigms of software design. This is one. It is focused on humans.

Overview of today

1. Review of last week
1. Users and their stories inform design

2. Use cases describe the function of software

2. Components implement the use cases

3. Testing and testing strategies

4. Debugging

5. Continuous integration

Component specifications get you to code

> Code needs review

• Dispassionate third party
– Tour of the code with

necessary context

– Improving code quality and
find bugs with questions

– “Why did you call this variable
Snuffleupagus when it stores the
average grade?”

– “This code is repeated, can it be a
function?”

– “What is happening HERE?!!?!”

Code Review Template

• Background

– Describe what the application does

– Describe the role of the code being
reviewed

• Comment or question

– Choice of variable and function names

– Readability of the code

– How improve reuse and efficiency

– How use external software packages

• Dispassionate third party
– Tour of the code with

necessary context

– Improving code quality and
find bugs with questions

Code Review Template

• Background

– Describe what the application does

– Describe the role of the code being
reviewed

• Comment or question

– Choice of variable and function names

– Readability of the code

– How improve reuse and efficiency

– How use external software packages

https://www.teamwork.com/blog/disagreeing-sandwich-technique/

Assume
good will

Component specifications get you to code

> Code needs review

> Code needs testing

> Has this happened to you:
– You wrote some code. It works! You are happy.

– You add a neat little feature. You think it works. You are happy.

– It doesn’t work, but you don’t know. You will be sad.You found out before anything bad happened.

> Code that checks if other code (code under test) is
working properly

> If the “code under test”
– Runs successfully

– Fails gracefully (as expected, when expected)

> The tests pass and the code is “accepted” as working

What is software testing?

def code_under_test(a, b):

return a + b

What is the code under test?

What is the code under test doing?

Could we name the code under test function better?

What is software testing?

def add(a, b):

return a + b

What is a test we can do for add?

Is this sufficient? Why or why not?

What is software testing?
if add(0, 0) == 0:

return True

else:

return False

def add(a, b):

return a + b

Can we test a different a, b pair?

Is this sufficient?

What is software testing?
if add(0, 1) == 1:

return True

else:

return False

if add(0, 2) == 2:

return True

else:

return False

def add(a, b):

return a + b

Can we test many a, b pairs?

Is this sufficient?

Testing is hard! Testing is FUN!

What is software testing?
for i in range(10):

if add(0, i) != i:

return False

> “Smoke” testing
– Does it “catch fire and burn” when you try to run the “code

under test”

– Most basic, limited information about system

Some “types” of testing

def add(a, b):

return a + b

Code under test Test code

add(0, 0)

> “One-shot” testing
– Does the code under test perform correctly for a specific set of

inputs

– Tests the correctness of code

Some “types” of testing

def add(a, b):

return a + b

Code under test Test code

if add(0, 0) == 0:

return True

else:

return False

> “Pattern” testing
– Does the code under test perform correctly for a pattern of

input cases

– Tests the correctness of code across a range of inputs

Some “types” of testing

def add(a, b):

return a + b

Code under test Test code

for i in range(10):

if add(0, i) != i:

return False

return True

> “Edge” testing
– Does the code under test perform correctly for invalid and

“special” inputs

– Tests the error handling and “singular” value handling

Some “types” of testing

def add(a, b):

return a + b

Code under test Test code

if add(“4”, 0) != 0:

return True

else:

return False

> “Edge” testing
– Does the code under test perform correctly for invalid and

“special” inputs

– Tests the error handling and “singular” value handling

Some “types” of testing

def add(a, b):

return a + b

Code under test Test code

assertRaises(TypeError,

add(“4”, 0))

> “Smoke” test
– Calling the code under test to see if it “catches fire”

> “One-shot” test
– Calling the code under test with known inputs expecting specific outputs

> “Pattern” test
– Calling the code under test with a pattern of known inputs expecting a pattern of outputs

> “Edge” test
– Calling the code under test in “edge cases” and in predefined failure

modes to make sure it fails gracefully. FUN!

> These names are for our convenience.

Some “types” of testing

> There is no magic number

> Patterns > One-shot > Smoke
– Not all tests offer the same “value” in testing

– Patterns reveal more possible failure modes

> Number of tests is less important than code coverage

How many tests for each component?

Test coverage and code coverage is an

important concept in software engineering

and can make and break job interviews.

> Fraction (%) of lines of code “exercised” by a test
– How many lines in add?

– What percentage of those lines are executed by our test?

100% (1 of 1 lines of add were executed)

What is code coverage?

def add(a, b):

return a + b

Code under test Test code

add(0, 0)

1.

> Fraction (%) of lines of code “exercised” by a test
– What percentage of those lines are executed by our test?

100% (1 of 1 lines of add were executed)

What is code coverage?

def add(a, b):

return a + b

Code under test Test code

if add(0, 0) == 0:

return True

else:

return False

1.

> Fraction (%) of lines of code “exercised” by a test
– What percentage of those lines are executed by our test?

100% (1 of 1 lines of add were executed)

What is code coverage?

def add(a, b):

return a + b

Code under test Test code

for i in range(10):

if add(0, i) != i:

return False

return True

1.

What is code coverage?

def add_or_multiply(op, a, b):

1. if op == “+”:

2. return a + b

3. else:

4. return a * b

Code under test

Test code

if add_or_multiply(“+”, 0, 1) != 1:

return False

Code coverage?

50%

What is code coverage?

def add_or_multiply(op, a, b):

1. if op == “+”:

2. return a + b

3. else:

4. return a * b

Code under test

Test code

if add_or_multiply(“*”, 0, 1) != 0:

return False

Code coverage?

75%

What is code coverage?

def add_or_multiply(op, a, b):

1. if op == “+”:

2. return a + b

3. else:

4. return a * b

Code under test

Test code

if add_or_multiply(“+”, 0, 1) != 0:

return False

if add_or_multiply(“*”, 0, 1) != 0:

return False

Code coverage?

100%

Is code coverage alone enough?

def add_or_multiply(op, a, b):

1. if op == “+”:

2. return a + b

3. else:

4. return a * b

Code under test

Test code

if add_or_multiply(“+”, 0, 1) != 0:

return False

if add_or_multiply(“/”, 0, 1) == 0:

return False

Code coverage?

100%

Testing is hard! Testing is fun!

> Mode of thinking: How can I break this?

> Want to get better?
– Practice!

> “Software engineer in test” is a specific job
– Software development engineering in test (SDET)

– U.S. Bureau of Labor Statistics predicts > 25% job growth

– Pathway to a Software Development Engineer

https://www.bls.gov/

Testing is only as good as your imagination!

> “Software engineer in test” is a specific job
– Software tester walks into a bar...

– Software tester run into a bar...

– Software tester crawls into a bar…

– Software tester walks into a bar and orders a drink…

– Software tester runs into a bar and orders a drink…

– Software tester crawls into a bar and orders a drink…

– …

– User walks into a bar and asks for the bathroom.

What does this look like in files?

math.py

def add(a, b):

…

def multiply(a, b):

…

test_math.py

def test_add():

…

def test_multiply():

…

> One source file for code, one source file for tests
– math.py has an accompanying test_math.py

What does this look like in files?

math.py

def add(a, b):

return a+b

def multiply(a, b):

…

test_math.py

def test_add():

…

def test_multiply():

…

def test_add():

for i in range(10):

assert add(0, i) == i

What does this look like in projects?

math.py

def add(a, b):

return a+b

def multiply(a, b):

…

test_math.py

def test_add():

…

def test_multiply():

…

my_project/

test/

What does this look like in real projects?

math.py

def add(a, b):

return a+b

def multiply(a, b):

…

test_math.py

def test_add():

…

def test_multiply():

…

my_project/

test/

student.py

def lookup(id):

…

def score(id, ans):

…

test_student.py

def test_lookup():

…

def test_score():

…

> After each change to a function or file (e.g. math.py)
– Rerun the tests (test_math.py)

– Do we need to run all tests?

Yes! Maybe?

What does this look like in day to day?

> After each change to a function or file (e.g. math.py)
– Rerun the tests (test_math.py)

– Do we need to run all tests?

> The design should tell us

> Component specification includes component interactions

> Component specification includes side effects

What does this look like in day to day?

> After each change to a function or file (e.g. math.py)
– Rerun the tests (test_math.py)

– Do we need to run all tests?

> If components in math.py call components in student.py, yes

> If components in student.py call components in math.py, yes

Testing is highly automated with tooling

> After each change to a function or file (e.g. math.py)
– Rerun all the tests (test_math.py, test_student.py)

– Testing is automated, so run them all

– Big software projects

> Testing can be expensive (money & time)

> Automated tests can be run 100s of times a day

Testing can be a big lift for large software

> Testing is automated
– pytest, nosetest, python –m unittest

> Tests can be written from component specifications

> Tests can be written without “code under test”

Test-driven development

> Tests can be written without “code under test”

Test-driven development

def test_add():

for i in range(10):

assert add(0, i) == i

>>> test_add()

[…]

NameError: name 'add'

is not defined

Test code Test code output

Code under test

> Tests can be written with empty “code under test”

Test-driven development

def test_add():

for i in range(10):

assert add(0, i) == i

>>> test_add()

[…]

AssertionError

Test code Test code output

Code under test

def add(a, b):

pass Do nothing, take no action, no operation, return None

> Tests can be written to drive writing “code under test”

Test-driven development

def test_add():

for i in range(10):

assert add(0, i) == i

>>> test_add()

>>>

Test code Test code output

Code under test

def add(a, b):

return a + b

No errors so a success

> Tests are written against the component specification

> All components are implemented as ‘pass’

> All tests:
– FAIL!

> Write code until all tests pass

> Release software bug free!

Test-driven development

def add(a, b):

pass

Overview of today

1. Review of last week
1. Users and their stories inform design

2. Use cases describe the function of software

2. Components implement the use cases

3. Testing and testing strategies

4. Debugging

5. Continuous integration

> What is a bug?
– “A software bug is an error, flaw, failure, or fault in a computer program

or system that causes it to produce an incorrect or unexpected result, or
behave in unintended ways.” – Wikipedia

> Where did the term come from?
– Thomas Edison (1878, letter to associate) - Wikipedia

When tests fail: Debugging

... difficulties arise—this thing gives out and [it is] then that "Bugs"—as such little

faults and difficulties are called—show themselves

> Where did the term come from?
– Grace Hopper, USN rear admiral, 1906-1992

– Two PhDs, developed the UNIVAC I, COBOL

When tests fail: Debugging

Wikipedia

• 1947
• Mark II mechanical computer
• Her team discovered a moth stuck in a relay
• The relay would not function until the moth was removed
• Thus, a computer was “debugged”

https://en.wikipedia.org/wiki/Grace_Hopper

> Two types of debugging
– Print debugging

> Using print statements to inspect the state of your code

– Debugger based tools

> Using tooling to inspect the state of your code at run time

When tests fail: Debugging

> Two types of debugging
– Print debugging

When tests fail: Debugging

def add_or_multiply(op, a, b):

if op == “+”:

return a + b

else:

return a * b

> Two types of debugging
– Print debugging

When tests fail: Debugging
def add_or_multiply(op, a, b):

print(“add_or_multiply called”)

print(op)

print(a)

print(b)

if op == “+”:

print(“we are adding”)

return a + b

else:

print(“we are multiplying”)

return a * b

> Two types of debugging
– Print debugging

When tests fail: Debugging
def add_or_multiply(op, a, b):

print(“add_or_multiply called”)

print(op)

print(a)

print(b)

if op == “+”:

print(“we are adding”)

return a + b

else:

print(“we are multiplying”)

return a * b

>>> add_or_multiply(“+”, 0, 0)

add_or_multiply called

+

0

0

we are adding

> Two types of debugging
– Print debugging

> WORKS!!!!!

> Time consuming

When tests fail: Debugging

def add_or_multiply(op, a, b):

if op == “+”:

return a + b

else:

return a * b

def add_or_multiply(op, a, b):

print(“add_or_multiply called”)

print(op)

print(a)

print(b)

if op == “+”:

print(“we are adding”)

return a + b

else:

print(“we are multiplying”)

return a * b

> Two types of debugging
– Debugger based tools

> Using tooling to inspect the state of your code at run time

When tests fail: Debugging

def add_or_multiply(op, a, b):

1. if op == “+”:

2. return a + b

3. else:

4. return a * b

> Two types of debugging
– Debugger based tools

> Using tooling to inspect the state of your code at run time

When tests fail: Debugging

def add_or_multiply(op, a, b):

1. if op == “+”:

2. return a + b

3. else:

4. return a * b

add_or_multiply(“/”, 0, 0)

def add_or_multiply(op, a, b):

1. if op == “+”:

2. return a + b

3. else:

4. return a * b

> Two types of debugging
– Debugger based tools

> Using tooling to inspect the state of your code at run time

When tests fail: Debugging

Variables
op = “/”

a = 0

b = 0

add_or_multiply(“/”, 0, 0)

What line is

executed next?

def add_or_multiply(op, a, b):

1. if op == “+”:

2. return a + b

3. else:

4. return a * b

> Two types of debugging
– Debugger based tools

> Using tooling to inspect the state of your code at run time

When tests fail: Debugging

Variables
op = “/”

a = 0

b = 0

add_or_multiply(“/”, 0, 0)

What line is

executed next?

def add_or_multiply(op, a, b):

1. if op == “+”:

2. return a + b

3. else:

4. return a * b

> Two types of debugging
– Debugger based tools

> Using tooling to inspect the state of your code at run time

When tests fail: Debugging

Variables
op = “/”

a = 0

b = 0

add_or_multiply(“/”, 0, 0)

What line is

executed next?

> Two types of debugging
– Print debugging

> Using print statements to inspect the state of your code

> Easy at first, slow and difficult later

– Debugger based tools

> Using tooling to inspect the state of your code at run time

> Hard at first, easy and fast later

> Career progression in SDE will require Debugger skill

When tests fail: Debugging

Overview of today

1. Review of last week
1. Users and their stories inform design

2. Use cases describe the function of software

2. Components implement the use cases

3. Testing and testing strategies

4. Debugging

5. Continuous integration

add(a, b)

multiply(a, b)

In version 2, we want to support complex numbers. How
can we be sure that our changes don’t break things?

“Continuous integration” or continuously integrating
new code into your software after testing.

The tests pass and the code is “accepted” as working

What is continuous software testing?

Version 1 of our simple math library

https://en.wikipedia.org/wiki/Complex_number

> Thinking about your assignment and homework for Session 2, can you
– Identify a software component for the design you proposed last week

> Can you subdivide the component?

> Why or why not?

– Describe, using the standard types of tests introduced, the testing challenges and
strategies you might opt to employ for that component

> Are there pattern tests available? Are you sure? Really?

> What edge tests are appropriate?

Homework for next week

	Slide 1: Software (design) for Data Scientists ISEA Session 3 David Beck University of Washington 2.7.2024
	Slide 2: Questions
	Slide 3: Overview of last week and today
	Slide 4: Design & testing fails
	Slide 5: What makes a design understandable?
	Slide 6: Running Example: Design of ATM
	Slide 7: Start by writing a user story
	Slide 8: Start by writing a user story
	Slide 9: Start by writing a user story
	Slide 10: Use Cases
	Slide 11: How to find use cases? In the user stories!
	Slide 12: What do we do with ATMs?
	Slide 13: Describing a Use Case (one way)
	Slide 14: Describing a Use Case (Check Balance)
	Slide 15: Describing a Use Case (Authentication)
	Slide 16: Component Design
	Slide 17: What is a component?
	Slide 18: Developing component specifications
	Slide 19: Specification of a component
	Slide 20: Identify shared components
	Slide 21: Identify shared components
	Slide 22: Overview of today
	Slide 23: Identify components for a Use Case
	Slide 24
	Slide 25: ATM components by Use Case
	Slide 26: Specify components
	Slide 27
	Slide 28: Specify components
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Steps in Design1
	Slide 33: Overview of today
	Slide 34: Component specifications get you to code
	Slide 35: Code Review Template
	Slide 36: Code Review Template
	Slide 37: Component specifications get you to code
	Slide 38: What is software testing?
	Slide 39: What is software testing?
	Slide 40: What is software testing?
	Slide 41: What is software testing?
	Slide 42: What is software testing?
	Slide 43: Some “types” of testing
	Slide 44: Some “types” of testing
	Slide 45: Some “types” of testing
	Slide 46: Some “types” of testing
	Slide 47: Some “types” of testing
	Slide 48: Some “types” of testing
	Slide 49: How many tests for each component?
	Slide 50: What is code coverage?
	Slide 51: What is code coverage?
	Slide 52: What is code coverage?
	Slide 53: What is code coverage?
	Slide 54: What is code coverage?
	Slide 55: What is code coverage?
	Slide 56: Is code coverage alone enough?
	Slide 57: Testing is hard! Testing is fun!
	Slide 58: Testing is only as good as your imagination!
	Slide 59: What does this look like in files?
	Slide 60: What does this look like in files?
	Slide 61: What does this look like in projects?
	Slide 62: What does this look like in real projects?
	Slide 63: What does this look like in day to day?
	Slide 64: What does this look like in day to day?
	Slide 65: Testing is highly automated with tooling
	Slide 66: Testing can be a big lift for large software
	Slide 67: Test-driven development
	Slide 68: Test-driven development
	Slide 69: Test-driven development
	Slide 70: Test-driven development
	Slide 71: Test-driven development
	Slide 72: Overview of today
	Slide 73: When tests fail: Debugging
	Slide 74: When tests fail: Debugging
	Slide 75: When tests fail: Debugging
	Slide 76: When tests fail: Debugging
	Slide 77: When tests fail: Debugging
	Slide 78: When tests fail: Debugging
	Slide 79: When tests fail: Debugging
	Slide 80: When tests fail: Debugging
	Slide 81: When tests fail: Debugging
	Slide 82: When tests fail: Debugging
	Slide 83: When tests fail: Debugging
	Slide 84: When tests fail: Debugging
	Slide 85: When tests fail: Debugging
	Slide 86: Overview of today
	Slide 87: What is continuous software testing?
	Slide 88: Homework for next week

