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Let’s take a step back…
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• What do data mining looks like



Data Mining: Knowledge Discovery from Data
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Data Mining: Knowledge Discovery from Data
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• Text -> Itemset:

- {“to”, “be”, “or”, “not”, …}


• Text -> Vector: 

- <1, 0, 0, 1>


• Behavior -> Vector: 

- User-Product Rating Matrix


• Behavior -> Network: 

- Twitter “Following” network


• Questions to keep in mind:

- What is the granularity of the analysis

- What counts as an observation

- What does each “row” represent in your DataFrame
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Data Mining: Knowledge Discovery from Data
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• Itemset + Patterns:

- Frequent Pattern Mining


• Itemset + Similarity:

- Jaccard Similarity


• Vector + Similarity:

- Dot Product

- Manhattan/Euclidean distance

- Cosine Similarity


• Sequence + Similarity:

- Edit distance

- Shingling


• Network + Pattern:

- …
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Data Mining: Knowledge Discovery from Data
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Data Mining: Knowledge Discovery from Data
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Example: Amazon “Frequently Bought Together”
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Example: Netflix Movie Recommender System
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Example: Text Retrieval
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Multimodal Data are Just Another Data Genre
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Multimodal Data are Just Another Data Genre
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• We can still abstract multimodal data as the data representation that we are 
familiar with.


• It allows us to build features bottom-up, and can be naturally followed with

- Exploratory analysis

- Visualization

- Correlation/prediction analysis


• For example:

- Extract the loudness of one’s speech at every 0.02 second, and make it a time series.

- Classify one’s facial expression with emotion labels, and vectorize its distribution.

- Identify nodding yes and shaking no (head movement) as an event sequence.



The CANDOR Dataset
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• 1656 unscripted conversations over video chat, recorded in 2020

• Available data

- Pre- and Post-conversation survey

• Perceptions of their conversation partners, their feelings about the overall conversation, their 

personality, etc..


- Video recording

• Computationally extracted features

• Modalities: Text, Audio, and Video



Structured as an “vertically integrated” framework
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• “low-level” mechanical features of conversation, 

- e.g. turn-taking.


• “mid-level” information streams, 

- e.g. semantic exchange, psycholinguistic markers, and emotion expressions, 


• “high-level” judgments reported after conversation, 

- people’s enjoyment and the impressions they formed of their conversation partners.



Low-level features
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• Closest to raw signals in the audio, video, and text of a conversation 
recording


• Often vary on a nearly continuous time scale.

• Require some degree of inference:

- Extracting vocal markers with signal processing (pitch, volume/loudness, etc.)

- Automated transcription with Automated speech recognition (ASR)

- Head movement, eye gaze, etc. 


• Concrete, specific, and objective properties from which higher-order 
inferences are derived.



High-level features
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• Subjective judgments about their conversations.

• Formed on a coarse time scale (e.g. conversation level)

• Reflected in the survey responses:

- measures of liking, enjoyment, and conversational flow, 

- evaluations of one’s partner’s social status, intelligence, and personality.

- …


• The broadest range of information and context are incorporated in making 
such judgements, and thus distinguished as high-level inferences.



The rich mid-level features
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• numerous features related to subjective perceptions of the interaction that 
typically vary on an intermediate time scale (e.g. turn level)


• Usually computed using algorithmic tools that were trained to attend to specific 
aspects of speech, sound, and movement to infer a psychological content, for 
example:


- happy facial expression, 

- increasing intensity in one’s voice, 

- a timely change of subject. 


• Characterized by their use of a narrower scope of context and antecedent 
reference.


- “A hitch in the voice, a sad glance away; all these signals, essential for shared understanding  
between humans, will go unnoticed by a machine that knows only language.” 



The Turn-Taking System (low-level)
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• Turn exchange: the way people manage to pass the floor back and forth in an 
orderly and efficient manner; 


• Turn duration: how long speakers talk before they turn over the floor; 

• Back-channeling: the active engagement that listeners display while 

speakers are talking

- “mhm,” “yeah,” and “exactly”



Turn exchange
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• Median between-speaker turn interval was +80 ms and was distributed 
approximately normally.


• Consistent with previous literature.

• Takeaway: reproduce findings in existing 

literature as sanity check!



Turn duration — What do we mean by “turn”?
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Back-channelling
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Conversation and well-being (high-level)
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• Respondents were asked to report 
their mood immediately before (red) 
and after (blue) their conversation.



Now is the fun part!
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• We explore this rich “middle layer” of interaction and associate it with high-
level impressions by exploring an open question in conversation research: 
What distinguishes a good conversationalist? 

• E.g. good conversationalists exhibited significantly more facial happiness 
expressions while listening.



Behavior Patterns of Good and Bad Conversationalists (fig. 8)
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• Visualized with frequency plots, 
as opposed to linear analysis.

Text

Audio

Video

observed directly ML Estimate



Speech rate (word per minute)
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• Good conversationalists spent more of their turns speaking quickly.

• Bad conversationalists spent a greater proportion of turns speaking slowly.



Semantic similarity/novelty
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• Use Text Embedding as vector representation of the spoken content.

• Use cosine similarity of the embedding vectors (this turn vs. previous turn) as 

a measurement of similarity/novelty.

• Good and bad conversationalists differ significantly.

• But good conversationalists also do not always add more novelty.



Loudness
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• No significant difference in the mean turn loudness.

• Bad conversationalists take more turns of medium loudness, 

• Good conversationalists take more turns with either lower or higher average 

loudness



Vocal intensity
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• A vocal intensity classifier is trained with the RAVDESS dataset.

- RAVDESS: recordings of trained actors who were prompted to read simple statements with either 

“normal” or “high” emotional intensity (used as labels).

- Features include summary statistics of common prosodic features, such as 

• mean, max, and SD of fundamental frequency (F0), volume (log energy), etc.


- The classifier is then applied to each turn in the CANDOR dataset


• people rated as good conversationalists spoke with greater intensity than bad 
conversationalists



Head Movement
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• Facial recognition followed with heuristic rules

- Check if over a 2-s period, (i) at least 10% of a participant’s face (ii) crossed its 

beginning position at least twice. 

- If yes, record “nod” if it occurs along vertical axis, record “shake” for horizontal. 


• Good conversationalists were significantly more engaged not only in nodding 
“yes”, but also “shaking” no.

Question: Is there better way to recognize nod and shake?



The rest of the CANDOR paper discusses
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• A qualitative glance of the topics in the conversation.

• Practical considerations and limitations of the dataset.

• A detailed Supplementary Materials



Low-,Mid-,High-level features meets data mining pillars
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My opinion
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Low-level feature 
that requires 
understanding of 
the data genre 

High-level feature 
that relates to the 
outcome being 
pursued

The rich mid-level features requires creative ways to 
use existing data mining algorithms, with the guidance 
of domain knowledge.



What you should know
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• Multimodal data is a new data genre that fits into the data mining pipeline.

• Roughly categorized as low-, mid-, high-level features.

• Mid-level features offers the richest opportunities.

• Conversation analysis is centered on the turn-taking mechanism.

- Data mining techniques and domain knowledge should go hands-in-hands.



Discussion: From Conversation to Classroom
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• What is equivalent to a “turn” in classroom?

• What would be the low-, mid-, and high-level features in the classroom 

setting?

• What can or cannot be applied?



Demo: Audio Feature Extraction with OpenSmile
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Assignment - Option 1
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• Reproduce a emotion intensity classifier by following the approach described 
in the CANDOR paper


- Using the RAVDESS dataset, and use “emotional intensity” as the label.

- Compute a series of acoustic summary  statistics—mean, maximum, and standard 

deviation for fundamental frequency, log energy, and voiced and unvoiced duration—
as the features.


- Train a logistic regression model (w/ or w/o feature normalization and regularization)



Assignment - Option 2
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• Analyze how acoustic features contribute to emotion recognition, including:

- Using the RAVDESS dataset, and use "emotional intensity" as the label.

- Fundamental frequency (F0) as a measurement of pitch

- Intensity/amplitude measurements (related to perceived loudness)

- Frequency perturbation (jitter) and amplitude perturbation (shimmer)

- Additional features such as spectral measures (e.g., MFCCs, formants) and voice 

quality metric


• Easier than Option 1 as it does not require training models.



Bonus Slides
How does LLM change the game?



Multimodal Foundation Models
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End-to-end approach leading to a 
pre-trained model with the capacity 

of in-context learning

we no longer care about the data representation and basic functionalities, we 
pre-trained the model and expect that it can perform (generalize) well on various 
task, through either fine-tuning or in-context learning



(Large) Audio-Language-Model
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• Audio processing is challenging due to data scarcity, but language is 
abundant.


• ALM can learn a shared latent space between audio-language modalities.

• In the post-LLM era, LALMs integrate audio encoders with LLMs, unlocking 

deeper audio perception and reasoning.

- Capable of captioning (ASR), reasoning, and open-ended QA.

- Examples: 

• Gemini, GPT-4o, 

• [open access] Qwen-audio, Qwen-audio-chat, Qwen-audio-instruct,

• [open source] GAMA, SALMONN, GAMA, etc.



Capability of Large Audio Language Models
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Capability of Large Audio Language Models
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Assignment - Option 3 [challenging]
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• Evaluate audio-capable foundation models for emotion intensity recognition

- Using the RAVDESS dataset, and use "emotional intensity" as the label.

- Implement and evaluate one or more audio foundation models such as Whisper and 

Qwen-Audio

- For Whisper, you will need to 

• Use Whisper's pretrained model as a feature extractor,

• Extract embeddings from one of Whisper's encoder layers,

• Add a classification head on top of the Whisper embeddings, 

• Fine-tune to predict emotion intensity levels


- For Qwen-Audio, you will need to

• Practice deploying the Qwen-Audio in a local environment, write prompt to obtain the 

predicted emotion intensity. 


