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Agenda

1. Logistics
2. A/B testing vs RCTs
3. RCTs in Education Policy
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A/B Testing

ONOURAWN =

Study Design

Decide what features to test

Recruit participants

Determine the length of one round of A/B testing (4 weeks, Kohawvi et al., 2023)
Design what data to collect and how: Google Analytics and surveys.

Analyze data in rapid cycle: t-test; regression

Decide how many rounds

Conduct power analysis to find the ideal sample size if possible. In reality, get as
many users as possible, because the sample size varies depending on how
sensitive a tested feature is, the unit of the analysis (at individual user level or a
given task level), and the duration of the testing session.

Minimizing contamination
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Outcome differences between A/B tests
and RCTs: Let’s Brainstorm!

A/B Testing Outcomes RCT Education Outcomes
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Randomized Controlled Trials (RCT):
The Problem of Selection Bias —

Potential Outcomes Framework: (Holland, 1986)
Y; = Y;(0) + T;(Y; (1) - ¥;(0))
f T, =1:Y;, =Y;(1)
T; = 0:Y; = Y;(0)
Assuming constant treatment effect:
(1) =Y(0) +7
Average Treatment Effect (ATE):
E[Y;(1) =Y (0)] =7
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Use difference in averages to estimate
the ATE?

E[Y,IT; = 1] - E[Y|T; = 0]
= E[Y,(DIT; = 1] - E[¥,(0)|T; = 0]
= E[%(0) + 7IT; = 1] — E[¥;(0)|T; = 0]
= 1+ E[Y,(0)IT; = 1] — E[¥;(0)|T; = 0]

t

ATE Selection Bias!

RCTs remove selection bias. Why?
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RCTs: A Population Regression

Framework
> |If Y; = Bo + b1T; + u; and E{Uﬂ7£l=50
> Then:
CEYIT; = 1] \( EIYIT; = 0] A
= E[Bo + p1(1) + wi|T; = 1] || = ElBo + B1(0) + w;|T; = 0]
= Bo + p1 + E|w;|T; = 1] = Bo + E|w;|T; = 0]
\= :80+181 Yy, \= :80 Y,

B = EIY;|T; = 1] — E[Y;|T; = 0]
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RCTs: OLS Estimator

> |If Y; = Bo + b1T; + u; and E[uiITi]=O
> Then:

p1 = EIY;|T; = 1] — E[Y;|T; = 0]

OLS Estimator: E — E[YilTi — 1] — E[YilTi == 0]
= YIT;=1-Y|T; =0

Unbiased Estimator: E [E] — ﬁl We identify the Average Treatment Effect (ATE)
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RCTs: Inference

> Before implementing an RCT or A/B test, need to ensure you
have sufficient power to conduct hypothesis tests:

— Power: Probability of rejecting the null hypothesis, given that the
null hypothesis is false

— One way to increase power: increase the sample size
— Typical power threshold: 80 percent

> Resource: PowerUp!
— https://www.causalevaluation.org/power-analysis.html
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https://www.causalevaluation.org/power-analysis.html

RCTs in Education Policy Settings

Before we think about methodology, let's consider some potential
blemishes of the so-called gold standard:

> Ethical issues
> Compliance/Fidelity to treatment

> Attrition

> Experiment bias

> External validity
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RCT Example: FAFSA Article
(Bettinger et al., 2012)

>

In education policy, there has been a push to increase college going rates

— Example: The Tennessee Higher Education Commission set goals to
increase the college-going rate for the class of 2023 to at least 60 percent

> However, there are substantive impediments that affect college access

— Process of applying for both financial aid and college is difficult
— Misinformation about the true cost of college

> Education research: Could a simplified application process significantly

improve college going rates?
— Goal: Reduce asymmetric information to help students (and parents)
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Bettinger et al. (2012): RCT Design

Authors examine whether an intervention of information or direct assistance in filling
out financial aid could improve college going rates

> H&R Block experiment
— Approximately 17,000 individuals

— Individuals came from households earning less than $45,000 a year with at least one
household member between the ages of 15 and 30 without a bachelor’s degree

— Participation Gift: $20

Randomization to treatment based on social security number

> Three treatment arms/groups
1.

2.
3.

(A) Personal assistance in filling out financial aid form and filing it; (B) Information
Information only: Potential financial aid amounts and tuition estimates for local colleges
Control group: Information on the importance of college and financial aid brochure
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Bettinger et al. (2012): Results

> Relative to the control group, 17-year-old high school seniors
who received the FAFSA intervention more likely to:

— Submit the FAFSA: 39% increase (56 vs. 40 percent)

— Attend college: 7 percentage point increase (34 vs. 27 percent)

— Enrollin college for two consecutive years: 8 percentage point
increase (36 vs. 28 percent)

> No significant differences between information-only and
control groups
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Bettinger et al. (2012):

Costs/Benefits(?)

> $88/participant in the
research setting

> Total estimated cost for
dependent over 2 years of
college: $8,750, on average

> Are the returns to college at
least as large as this?
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The effects of the FAFSA treatment are large, especially
relative to the intervention’s low marginal cost. The treatment
of providing FAFSA assistance took eight minutes, on average,
and cost about $3 per participant for tax professional training
and time. Software installation, maintenance, and printing ma-
terials added roughly another $15 per participant. The largest
costs to the program were from call center support ($30 per
participant) and participation incentives ($20 to participants
and up to $20 to tax professionals). These costs would likely
fall significantly in a more automated and/or nonresearch set-
ting. Even at $88 per participant, this translates to a cost of
about $1,100 per dependent induced to enroll in college and
$5,833 per independent induced to enroll in college in the
first year following the experiment. We may also wish to
count the additional cost from higher aid payments: $375 on
average per dependent or $3,826 on average per dependent
induced to attend college, and approximately $100 on average
per independent or $4,157 on average per independent. Over
two years of college, this amounts to a total cost of about $8,750
and $14,150 for dependents and independents, respectively.
Returns to college among those who enrolled as a result of
the treatment would have to be at least as large as this to
consider the program cost-effective.
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Setting Standards: What Works
Clearinghouse (WW()

To assess the strength of an RCT in education policy,
WWC follows 5 steps

1. Review outcome measures and check for
confounding factors

2. Assess the assignment to treatment conditions
3. Assess compositional change
4. Meet a baseline equivalence standard
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Step 1: Review outcome measures and
check for confounding factors

Outcome Measure Standards
> Standard 1: Face Validity
— Does the outcome measure what it claims to measure?
> Standard 2: Reliability (Concept from classical test theory)

— Does the measure yield similar results/scores across different
administrations?

> Standard 3: Not over-aligned

— Does the outcome measure privilege one randomization group over the
other?

— Is the outcome tailored to the treatment condition?
> Standard 4: Consistent data collection procedures
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Step 1: Review outcome measures and
check for confounding factors

Confounding factors

>

According to WWC, A confounding factor has the following

characteristics:
— Itis observed
— It aligns completely with only one study condition

— Itis not part of the intervention the study is testing
Source: WWC Manual, Version 5.0 (p. 29)

Examples?
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Step 2: Assess the assignment to
treatment conditions

Random assignment is properly done if one
of the following two conditions are met:
The WWC accepts three methods of accounting

1. Unit assignment to treatment/controlis =™ tioe. Staclios sam
: or assignment probabilities. Studies can:
entirely random (e.g., random number R .

8e nera tO r) 2. Include an indicator (or dummy) variable in
2. If unit assignment to treatment/control oot oot o

nOt entire')’ randoml there mUSt be d 3. Combine impacts estimated separately for

nonzero probability of being assigned each subsample.

to the conditions Source: WWC Manual, Version 5.0 (p. 32)
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Step 3: Assess compositional change

> Key idea: To what extent might sample attrition affect
estimated results of the intervention or treatment?

Sample members at Sample members
random assignment observed at follow-up
Two types of attrition: Q0ONONOAN OO OO
mervention BONOOQD QOO O
1. Overall attrition Q0000000 008 O
2. Differential attrition Gomparison 00000000 O 00000
croup DOOOOOOO Q 000
Q0000000 QO 00 o

Source: Figure 6. WWC Procedures and Standards Handbook, Version 5.0
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Step 4: Meet a baseline equivalence
standard

> Main idea: There should be no differences, on average,
between treatment and control groups
— Observed characteristics and unobserved characteristics

> Strategy: Collect baseline data and test whether groups are
balanced on observable characteristics

> But what about unobservable characteristics?
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Time to code!

> Access the Google Colab site for our coding
session
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Assignment Options

> Design an educational RCT:

— Consider how you would design your study to satisfy the four
requirements from the WWC

— Use PowerUp! to determine the sample size needed for a given
effect size

> Work through the school district hypothetical exercise posted

>

on Canvas

Experiment with the Google Collab Code: Alter the simulation
parameters to create your own RCT data set for analysis
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