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Introduction

> One important source of data to support policy discourse and
decision-making involves stakeholders’ lived experiences about the
implementation of current policy and their opinions about how to
improve.

> Stakeholders' voices may be collected from interviews, open-ended
survey responses, or texts obtained from social media posts.

> The cost of manually analyzing even a moderately sized text may
hinder the actual use of stakeholders’ voices.

> Data science methods—Ilike topic modeling (LDA), sentiment analysis,
and large language models (LLMs, notably ChatGPT)—may offer the
efficiency, but can be constrained by the lack of domain and contextual
knowledge.

> The central aim of this study is to examine the validity of LLMs to
analyze interview data about a specific domain—education policies
and programs—in a specific context—Washington state’s K-12 school
system.




Research Questions

A large study of identifying policies and programs that either advance or
hinder racial and economic equity in Washington (WA) State’s K-12 public
school system in 2022.

Substance Research Questions:

1. What are the key themes that WA stakeholders voiced about K-12 public
school system?

2. Which themes did stakeholders recognize as advancing educational equity
(positive)? Conversely, which areas were mentioned as needing improvement
or hinder (negative) educational equity?

Methodological Research Questions:

1. How accurate and valid are GPT-4 labels of key themes when comparing to
human experts’ labels and traditional topic modeling results?

2. How accurate and valid are GPT-4 sentiment classifications when comparing to
human experts’ and lexicon-based sentiment analysis?
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Data Collection and Preprocessing

> 24 interviews (45-60 minutes) with stakeholders:

> Administrators: state legislators, other state-level policymakers,
school district administrators;

> Non-Profit and Advocates: teacher union representatives, policy
advocates, and community leaders;

> Educators: teachers, teacher coaches or mentors
> Tidytext-format data contains about 1,700 entries (i.e. documents).
— One complete thought (one long or several short sentences)

— Filtered out stop words and words like “um,” “so,” and “you know”
- Stemming

> (Contains interviewees' research ID, demographics, job roles, and job
location.




Methods: Human-Computer
Interactive Approach

Final codebook
> Parent codes (8)
> Child codes (30)
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GPT-4 Thematic Analysis: Chain-of-
Thought (CoT) Prompt

Task: As a policy researcher, you've been provided with a paragraph extracted from an interview with an education policy
stakeholder. Utilize the provided Codebook (in CSV format) to code the paragraph. The Codebook comprises four columns: ‘Parent’,
‘Child’, ‘Child_description’, and ‘Key words'.

prompt_base2 2 = f"" ]»

Role, context,

Steps:

1. ldentify Salient Themes:

Understand the paragraph’s content within the context of the Washington State K-12 public school system.
Refer to the ‘Parent’ column in the Codebook for broader thematic categories.

Pinpoint up to three salient themes from these ‘Parent’ categories.

These themes should highlight the most significant ideas in the paragraph.

Label the paragraph with the chosen ‘Parent’ themes.

and overall task

2. Dive into Child Themes:
The ‘Child’ column in the Codebook lists detailed thematic subcategories, which fall under the broader ‘Parent’ categories.
The ‘Child_description’ elaborates on the ‘Child" categories, and the ‘Key words' column lists pertinent terms for each ‘Child’ category.

3. Associate with Child Categories:

Revisit the paragraph, keeping the Washington State K-12 public school system context in mind.

For each previously identified ‘Parent’ theme, pinpoint the apt ‘Child’ subcategories from the Codebook. The ‘Child_description’ and
‘Key words' columns can aid your decision.

Ensure the ‘Child’ categories align with the paragraph’s content. If there's no fit or you're uncertain, label it as ‘None'.

From your identified ‘Parent’ and ‘Child’ pairs, pick the top three pairs that encapsulate the paragraph’s central ideas.

Label the paragraph with these three ‘Parent’ and corresponding ‘Child" pairs.

Codebook:
{codebook}

Paragraph for Analysis:
[[[TEXTGOHERE]]]
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Child Code Level

Agreement Evaluation Metrics Bootstrapped Evaluation Metrics
Metrics
% Hit % Precisio| Recall | F1 |Accurac| MEA |Cohen's| AUC
Rates |Shuffled n y Kappa
Hit Rate
GPT-4 vs. 77.89 | 17.89 0.33 0.63 | 0.42 | 0.9169 | 0.0931 | 0.3738 | 0.7489
Human (95% Cl:[(95% Cl:| (95% Cl:| (95% CI:

0.9042, | 0.0912, | 0.3644, | 0.7383,
0.9088) | 0.0958) | 0.3758) | 0.7596)

LDA vs. 60.65 | 13.66 0.23 0.38 | 0.27 | 0.8948 | 0.1052 | 0.1862 | 0.6307
Human (95% ClI:1(95% ClI: | (95% Cl: | (95% CI:
0.8921, | 0.1029, | 0.1850, | 0.6200,
0.8971)| 0.1079) | 0.1899) | 0.6407)

Scholer et al. [2013] reported that human assessors seeing a
document for a second time only agreed with their first label

52% of the time.




Parent Code Level

Agreement Evaluation Metrics Bootstrapped Evaluation Metrics
Metrics
% Hit % Precisio| Recall | F1 |Accuracyl MEA |Cohen's| AUC
Rates |Shuffled n Kappa
Hit Rate
GPT-4 vs. 96.02 | 56.67 | 51.61 | 86.71 | 61.83 | 0.7975 | 0.2025 | 0.4570 | 0.7948
Human (95% Cl:| (95% Cl: [(95% Cl:| (95% ClI:
0.7879, | 0.1947, [ 0.4551,| 0.7820,
0.8053) | 0.2121) | 0.4605)| 0.8059)
LDA vs. 76.13 | 47.80 | 42.97 | 63.75 | 48.63 | 0.7607 | 0.2393 | 0.2928 | 0.6761
Human (95% Cl:| (95% Cl: [(95% Cl:| (95% ClI:
0.7536, | 0.2321, | 0.2903, | 0.6606,
0.7679) | 0.2464) | 0.2987) | 0.6878)
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Cosine
Similarity

- All “child” themes
are highly
correlated
between
machine and
VERIELEN

- Furtherindicating
that GPT-4 and
human align
better, exceptfor
progressive
funding; judicial
system; and tests
and inconsistent
standards for
college readiness
and students’
success

LDA vs. Human

Cosine Similarities (Child code)

1.00

0.98 -

0.96 1

0.94 1

0.92 1

0.90 1

0.88

0.86

0.84 1

progressive fundin
e Jjudicial systems

7
Tests and inconsist standards for college readiness and students’ success”
7’

e 7
' o
’
7 o
’
’ <
%9 °
’
’ o
’
’
s °
/ °
7 0
.
® o

legislation process

0.88 0.90 0.92 0.94
GPT-4 vs. Human

0.84 0.86

0.96 0.98

1.00




Cosine Similarities Zoomed (Child code)
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Sentiment Analysis

Prompt:

Act as a policy researcher, you will classifythe sentiment in the interviews of educational policy
stakeholders as: “Positive”, “Negative”, or “Neutral”’. Here is a statement from a policy stakeholder:
[]

To warrant “Positive” sentiment, the statement has to: (1) include the interviewee’s satisfaction
about an educational policy (policies) and program(s), or (2) express an enhancement or potential
to enhance the quality or equity of student learning or school system, or (3) identify an
improvement from past practice. To warrant “Negative”, the statement describes the interviewees’
dissatisfactions, or identifies problems/issues/challenges, or suggests areas needed for further
improvement. When the interviewee just states the fact without expressing either positive or
negative sentiment, you can classify as “neutral’. When multiple sentiments are observed inone
statement, identify the most prevailing sentiment. Explain your reasoning for your analysis.

Domain-specific definition of sentiment




Sentiment Analysis

GPT-4 Lexicon Evaluation metrics
Positive Negative Neutral Positive Negativ Neutral Accuracy OMATTE
e Kappa
Positive 218 4 20 T 18 205 CPT-4 (558 0.38
vs. LDA
Human Negative 71 322 162 18 [ 372 hDAVS'O.47 0.13
uman
Neutral 31 31 215 22 59 431

GPT-41s doing much better job than lexicon-based approach.
Agarwal et al. [2019] saw k = 0.44 for news sentiment




Human Sentiment Categories at Child

Code Level by Interviewees’ Job Roles
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% of Human Sentiment Categories Are
Accurately Identified by Computer (Child
Code)
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Discussion

> LLMS' performance is sensitive to prompts.

— The utility of LLMs to assist domain-specific data analysis hinges
on the integration of domain knowledge to inform prompt
development

— GPT-4 classifications are more accurate and valid for themes that
are less domain specific.

> (LLM vs Human) compares with (Traditional NLP vs Human)

— LLM, to some degree, understand the meaning of the language
and contexts, which traditional LDA or lexicon-based analysis are
not able to.

— Human experts have theoretical and domain knowledge and
lived experience in ed policy.
> Sentiment analysis

— GPT and human have a higher agreement on either positive or
negative, but lower agreement on neutral.

— Traditional lexicon-based approach couldn’'t capture dom
specific sentiment.
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Introduction

Content validity

Definition:

The degree to which
the measureis relevant
to, and representative

of, the targeted
constructitisintended
to measure.

Methods:
- Expert reviews

- Relevant conceptual
framework and
literature

Construct
Validity

Definition:

The degree to whichthe
multiple observable measures
are related inthe ways as
intended:

- Convergentvalidity
- Divergentvalidity

Methods:
- Correlation

Criterion
Validity

Definition:

How well LLM/ML measures
perform against aset of “truth”
and the utility for policy
discourse and action

Methods:
- human expert coding
- Stakeholder’s perception of the
utility tointerpret,
communicate, and use to take
actions



Cohen's Kappa for Child Code with 95% Confidence Interval
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GPT-Human
Cohen’s K by Parent

Code

Cohen's Kappa for Parent Code with 95% Confidence Interval
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LDA-Human
Cohen’s K by Child
Code

Cohen's Kappa for Parent Code with 95% Confidence Interval
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LDA vs. Human

Cosine Similarities (Parent code)
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Human Sentiment Classifications at
Parent Code Level by Interviewees’ Job
Roles

Educators Administrators Mon-profitfadvocates
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Parent codes

Parent codes

% of Human Sentiment Categories Are
Accurately Identified by Computer (Parent
Code)
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