Recommender System and Social Experiment

University of Maryland aiwei@umd.edu

Wei Ai

4/19/2024

Today's plan

- Recommender System as Information Filtering
- Recommender System as Applied Machine Learning
- (Break)
- Recommender System as Contextualized Nudge
- Recommender System in Social Experiment
- (Discussion)

Short vs. Long Term Information Need

- Short-term information need (Ad hoc retrieval)
 - "Temporary need", e.g., info about used cars
 - Information source is relatively static
 - User "pulls" information
 - Application example: library search, Web search
- Long-term information need (Filtering)
 - "Stable need", e.g., new data mining algorithms
 - Information source is dynamic
 - System "pushes" information to user
 - Applications: news filter, recommender systems

Examples of Information Filtering

- News filtering
- Email filtering
- Movie/book recommenders
- Literature recommenders
- And many others ...

Content-based Filtering vs. Collaborative Filtering

- Basic filtering question: Will user U like item X?
- Two different ways of answering it
 - Look at characters of what U likes \rightarrow characterize X \rightarrow content-based filtering
 - Look at who likes X
- \rightarrow characterize U \rightarrow collaborative filtering Can be combined (hybrid filtering)

Collaborative filtering is also called "Recommender Systems"

What is Collaborative Filtering (CF)?

- Making filtering decisions for an individual user based on the judgments of other users
- Inferring individual's interest/preferences from that of other similar users
- General idea
 - Given a user u, find similar users $\{u_1, \ldots, u_m\}$
 - Predict u's preferences based on the preferences of u_1, \ldots, u_m

Collaborative Filtering: Assumptions

- Users with a common interest will have similar preferences Users with similar preferences probably share the same interest
- Examples
 - "interest is IR" \rightarrow "favor SIGIR papers"
 - "favor SIGIR papers" → "interest is IR"
- Sufficiently large number of user preferences are available

CF: Intuitions

- User similarity (Paul Resnick vs. Rahul Sami)

 - If Paul liked the movie, Rahul will like the movie
- Item similarity
 - you liked Star Wars
 - You may also like Independence Day

- Suppose Paul and Rahul viewed similar movies in the past six months ...

- Since 90% of those who liked Star Wars also liked Independence Day, and,

A Formal Framework for Rating

Where are the intuitions?

- Similar users have similar preferences
 - If $u \approx u'$, then for all o's, $f(u,o) \approx f(u',o)$
- Similar objects have similar user preferences - If $o \approx o'$, then for all u's, f(u,o) \approx f(u,o')
- In general, f is "locally constant"
 - If $u \approx u'$ and $o \approx o'$, then $f(u,o) \approx f(u',o')$
 - "Local smoothness" makes it possible to predict unknown values by interpolation or extrapolation
- What does "local" mean?

Two Groups of Approaches

- Memory-based approaches
 - Also known as "Neighbor-based" approaches.
 - Find "neighbors" of u and combine g(u')(o)'s
- Model-based approaches
 - Assume structures/model
 - $f(u, o) = f'(c_u, c_o)$, where c_u , c_o are model representations for u and o.
 - Estimation & Probabilistic inference

Predicting Score

1. Calculate correlation

$$r_{KL} = \frac{Cov(K, L)}{\sigma_K \sigma_L}$$

$$= \frac{\sum_i (K_i - \overline{K})(L_i - \overline{L})}{\sqrt{\sum_i (K_i - \overline{K})^2} \sqrt{\sum_i (L_i - \overline{L})^2}}$$

$$= \frac{-2 - 2 - 2 - 2}{\sqrt{10} \sqrt{10}} = -0.8$$

2. Aggregate predictions

$$\sum \left(J_{6} - \overline{J}\right) r_{KJ}$$

$$K_{6_{\text{pred}}} = \overline{K} + \frac{J \in \text{raters}}{\sum_{J} |r_{KJ}|} = 3 + \frac{2r_{KM} - r_{KL}}{|1| + |-.8|} = 4.56$$

message #	Ken	Lee	Meg	Nan
1	1	4	2	2
2	5	2	4	4
3			3	
4	2	5		5
5	4	1		1
6	?	2	5	?

Figure 5: a sample matrix of ratings.

Memory-based Approaches (Resnick et al. 94)

- General ideas:
 - x_{ii}: rating of object j by user i
 - n_i: average rating of all objects by user i
 - Normalized ratings: $v_{ij} = x_{ij} n_i$
 - Memory-based prediction

$$v_{dj} = k \sum_{i=1}^{m} w(a,i) v_{ij}$$
 $k = 1 / \sum_{i=1}^{m} w(a,i)$ $rac{k}{k} = v_{aj} + n_{aj}$

user a and i

• Specific approaches differ in w(a, i) -- the distance/similarity between

User Similarity Measures

Pearson correlation coefficient (sum over commonly rated items)

 $W_{\rho}(a,i) = -$

• Cosine measure

 $W_c(a,i) =$

Many other possibilities!

$$\frac{\sum_{j} (x_{aj} - n_{a})(x_{ij} - n_{i})}{\sqrt{\sum_{j} (x_{aj} - n_{a})^{2} \sum_{j} (x_{ij} - n_{i})^{2}}}$$

$$= \frac{\sum_{j=1}^{n} x_{aj} x_{ij}}{\sqrt{\sum_{j=1}^{n} x_{aj}^{2} \sum_{j=1}^{n} x_{ij}^{2}}}$$

Problem with Memory-based Approaches

- Too many dimensions! - The rating matrix is M(user) x N (item)
- Too sparse observations!
 - Users rate very few items.
 - Recommendation not reliable
- Could we model users with fewer dimensions?
 - Latent factor models
 - Model users and items as k-dimension vectors

Model-Based Approach — Matrix Factorization

M x N

M x K K x N

* K dimensions can be interpreted as K interests, K concepts, K themes, etc.

Example: NetFlix

 $\hat{r}_{ui} = b_u + b_i + U_u \cdot I_i$

Summary: RecSys as Information Filtering

- Information retrieval and information filtering are two ways to meet information need.
- Content based filtering and collaborative filtering are two major ways for information filtering.
- Recommender system most frequently refers to collaborative filtering. • Two types of collaborative filtering:
 - Memory-based <--> Similarity of vectors
 - Model-based. $\langle --- \rangle$ Patterns in Matrix (SVD)

RecSys as Applied Machine Learning

 Model-based Collaborative Filtering can be seen as a Machine Learning Prediction (regression) task.

RMSE = 4

- But other problem formulation is also possible:
 - Classification: predict if a user like/dislike, purchase/not-purchase an item.
 - Sequential prediction: predict the next item in a sequence.
 - Ranking: provide a ranked list of items.

$$\sqrt{\sum (r_{ui} - \hat{r}_{ui})^2}$$

More ML algorithms can be adopted to RecSys

- Whenever a new ML algorithm trends, you will see them being used in f(u, i)
 - Neural network models (matrix factorization beyond dot product)
 - Graph network models (user-user graph, user-item graph, etc.)
 - Sequential neural network models (RNN/LSTM, attention, transformer, ...)
- Open questions:
 - How will LLM be incorporated?
 - Will there be pre-trained foundation models for RecSys?

Evaluation is a first-class citizen in RecSys

- Different problem formulation means different evaluation metrics:
 - Classification: accuracy,
 - Sequential prediction: Precision/recall, ...
 - Ranking: NDCG, MAP, ...
- Evaluation beyond model performance:
 - Diversity and serendipity
 - Click-through rate vs. conversion rate
 - Short term revenue vs. long-term retention

Recommender System in Social Experiment

Data Science for Social Good

Traffic Safety

House Fires

Lead Poisoning

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

Challenges in Promoting Behavioral Changes

- People may not make the most rational choice.
- People may not comply with unenforced policy.
- Change people's behavior through nudge.

Can we nudge better with data science?

... is any aspect of the choice architecture that alters people's behavior in a predictable way without forbidding any options or significantly changing their economic incentives.

Can we nudge better with data science?

Nudge

End-to-End: from Data to Action Causal Data Inference

- Identify effective nudges through causal inference.
- Optimize the nudge using recommender system
- Evaluate the nudge with field experiment.

theory →theory + data rule based → data/algorithm driven algorithm assigned treatments + advanced result analysis

An End-to-End Pipeline

- unstructured data.
- optimize the nudge.
- Randomized experiment is the gold standard for causal inference. Machine effect.

• Machine learning can help causal inference handle high-dimensional, complex, or

• Recommender System is a machine learning application, but with the goal of

learning personalizes treatment and helps analyze heterogeneous treatment

- Keep iterating the pipeline without an "end."
- Flexible Entry Point to Start

Explore heterogeneous treatment effect to find insights for better nudge.

- Recommending teams promotes prosocial lending in online microfinance.
 - Team competition increases driver productivity on ride-sharing platform.

kiva — Loans that changes lives

Challenge: How to increase lender participation?

Kiva Lending Team

Check out fundraising loans already being supported by Team Canada: www.kiva.org/team/team_canada/loans? status=fundRaising

About us We're Canadian, eh?

https://www.kiva.org/team/university_of_maryland

https://www.kiva.org/team/team_canada

TEAM LEADERBOARDS

Amount funded

- make "good" recommendations.

• H1: Lenders will be more likely to join teams if we

• H2: Lenders will lend more after they join teams.

Experiment Design: 3 x 2 factorial

Control

Explanation	
Explanation	No Explanation
Location-Explanation	Location-NoExplanation
History-Explanation	History- NoExplanation
Leaderboard- Explanation	Leaderboard- NoExplanation
No Contact	
Teams Exist	
iversity of WASHINGTON	JNIVERSITY OF

"Teams Exist" Email

Hi Wei,

Since you're such an awesome Kiva lender, we wanted to let you know about a fun feature of the Kiva experience: Kiva Lending Teams!

Lending Teams are self-organized groups around shared interests – location, alumni orgs, social causes, you name it. You can connect with other lenders, discover loans you might be interested in, and track your collective impact.

Check out some of the thousands of lending teams to find the right one for you.

Thanks for being a part of the Kiva community and making a difference around the world.

Best Wishes, The Kiva Team

"Team Recommendation" Emails

Hi Wei,

Since you're such an awesome Kiva lender, we wanted to let you know about a fun feature of the Kiva experience: <u>Kiva Lending Teams!</u>

Lending Teams are self-organized groups around shared interests – location, alumni orgs, social causes, you name it. You can connect with other lenders, discover loans you might be interested in, and track your collective impact.

Based on your past lending, people who have made similar loans enjoy being a part of these teams:

Or check out the thousands of other lending teams to find the right one for you.

Thanks for being a part of the Kiva community and making a difference around the world.

Best Wishes,

"Other lenders who live near you enjoy being a part of these teams" "Based on your past lending, people who have made similar loans enjoy being a part of these teams"

"Some of the most popular teams are"

"Here are a few teams you may want to check out"

UNIVERSITY OF OREGON

cience Institute

ING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

Effectiveness on Joining a Team

• H1: Lenders will be more likely to join teams if we make "good" recommendations

Does Joining Team Increase Lending?

- Instrumental Variable to tease out confounders.
- Treatment assignment (receiving email) as IV.
 - Partial correlation: receiving email ~ joining team. F = 23.55
 - Exclusion restriction: Email by itself doesn't increase lending
 - Chen et al. (2017)

Does Joining Team Increase Lending?

Can we apply a similar nudge (teams) to other online platforms?

Sharing Economy and its Problems

- Many view the sharing economy as the future of work.
- But for drivers:
 - Lack of Identity
 - Feeling Unaffiliated
 - Sense of achievement
- Can we help with driver teams?

• "I have no interaction or relationship with other colleagues." (A driver, The Curiosity Daily, 2019)

• "These are jobs that don't lead to anything." (A TaskRabbit worker, The New Yorker, 2017)

Improving Driver Performance through Team Competition

- Does team contest increase driver productivity?
 - Social identity theory. (Akerlof & Kranton 2000, 2010)
 - Contest theory. (Konrad 2010, Fu et al. 2015)
- Does team composition make a difference? - Homephily vs. Diversity?

Team Contest on the Platform

Data-driven recommender system is not available

We can start from field experiments!

Experiment Design

Management Science, forthcoming

Average and Heterogeneous Treatment Effect

- Treated drivers earn 35 CNY (12%) more than those in the control group.
- Effects are stronger for those in responsive teams (56 CNY, 19%), and persist two weeks after contest.

Team Responsiveness

60.8% of team captains submitted the survey: responsive teams

Similarity and Diversity on Driver Productivity

		Dep	pendent variable:	Δ Daily Revenu	ue (CNY)	
		By Treatment Group		By Diversity Metrics		
	(1)	(2)	(3)	(4)	(5)	(6)
Time Period	Contest	2 weeks Post Contest	4 weeks Post Contest	Contest	2 weeks Post Contest	4 weeks Post Contest
Age Similarity	0.933	33.19**	9.806			
	(16.91)	(12.70)	(11.05)			
Hometown Similarity	5.838	20.70	17.12			
	(18.35)	(13.16)	(13.62)			
Productivity Similarity	-14.65	21.47*	13.85			
	(17.15)	(12.04)	(12.67)			
Productivity Diversity	-17.50	17.50	11.33			
	(15.62)	(12.25)	(13.09)			
Age Stdev	, , , , , , , , , , , , , , , , , , ,			-0.417	-3.357**	-0.123
				(1.647)	(1.346)	(1.279)
Avg. Hometown Distance				0.0297	-0.00706	-0.0196
				(0.0242)	(0.0227)	(0.0203)
Productivity Std.				0.0953	-0.0347	-0.00401
				(0.122)	(0.0882)	(0.0961)
DiDi Age Std.				-0.0646	-0.0370	-0.0852
				(0.0914)	(0.0852)	(0.0799)
Constant	16.07	-68.17***	-86.12***	4.701	-15.89	-48.15* [*]
	(13.69)	(9.377)	(8.566)	(29.68)	(21.04)	(22.52)
# Driver	1,750	1,750	1,750	1,750	1,750	1,750
Observations	8,750	8,750	8,750	8,750	8,750	8,750
Standard errors in parent conditions. * $p < 0.1$, *	theses are $p < 0.05$	clustered at the , *** <i>p</i> < 0.01	contest (indivi	dual) level for t	treatment (cont	rol)
		ADVANC	ING DATA-INTENSIVE DISCOVERY I	N ALL FIELDS	OREGO	IN

Experiment Result Summary

- Team contest increases driver productivity
 - Driven by responsive teams.
- Team Composition makes a difference:
 - Hometown-similar teams are more likely to be responsive.
 - Age-similar teams are more active after the contest
- Heterogeneity in treatment Effects.

Platform-wide Implementation

50

- Zhang et al. 2019 (CIKM'19)
- - across **52** cities
- Supported new field experiments - Ye et al. 2020 (working paper)

Zhang et al. 2019. <u>Recommendation-based Team Formation for On-demand Taxi-calling Platforms</u>, CIKM'19

Limitation - Teams Dismissed After Contest

- Wasted opportunities:
 - Team identify should have long-term effects.
- Short-term contests costly:
 - Status contest without monetary rewards.
- and retention?

• Will bonus-free longer-term team leaderboard improve worker revenue

Problems and Opportunities $O(2^{-1})$ $O(2^{-1})$

- Heterogeneity in treatment effects:
 - Why does a design work in one city but not in another?
 - What types of drivers and teams benefit more from team contest?
- Heterogeneity in contest design:
 - e.g. Prize structure, team size, and Design What contest designs better increase driver performance?
- In 2018: 2.08 Million drivers participated in 1,548 team contests across 52 cities
 Each contest is a "mini" experiment.

Ye et al. Predicting Individual Treatment Effects of Large scate Team Competitions in a Ride-sharing Economy ANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS KDD'2020

Machine Learning Analysis – A Prediction Task

- We want to understand how different factors **predict** the outcomes of individual drivers
 - The Individual Treatment Effect (ITE):
 - Revenue increase of a driver who team up and participate in the contests compared to the solo drivers in the control group

Individual Treatment Effect Estimation

Within-driver revenue change: $\Delta R_j = R_{j,T_1} - R_{j,T_0}$

Average revenue change of control group:

Individual treatment effect:

 $\Delta R_i^{\text{ITE}} = \Delta R_j - \Delta R_{\text{control}}$

What predicts individual treatment effect?

- City properties
- Contest design
- Driver properties
- Team properties
- 555 features designed based on theories and domain knowledge:
 - e.g., virtual teams, social influence, social identity

Table S40. List of features

Level	Feature Selected
Team-level	Pre-contest team ranking in leaderboard
	Teammate average pairwise # of pre-contest team-ups
	Pre-contest average pairwise similarity in driving area
	Team average pairwise hometown distance
	Team age standard deviation
Driver-level	Driver age
	Driver platform age
	Driver pre-contest revenue difference with teammates' average
City-level	# of snow days during contest
	# of rainy days during contest
	Amount of bonus for the winning team
	Has individual threshold bonus during contest
	City-level pre-contest average daily order-fulfillment rate
	# of drivers on this platform in contest city

Method

- Model: Lasso, Gradient Boosting Regression Tree
 - Capture both linear and non-linear effects of features
 - Easy to interpret the features
- 520 contests, 143 cities, > 0.5 million drivers
- Data split
 - Train (70%), Validation (15%), Test (15%)
- Evaluation

$$\mathsf{RMSE} = \sqrt{\frac{1}{N}\sum_{t}(\hat{y}_t - y_t)^2}$$

Results - Model Performance

• Best-performing models reduce the prediction error (RMSE) by > 11.5%

Model

Random Forest Uniform baseline Random baseline

All Teams			
dation RMSE	Testing RMSE		
172.64	172.68		
_	195.10		
_	277.42		

Feature Importance robustness check and explaining heterogeneity

		Feature Importance	
Ranking	Feature name	System-formed	All teams
1	Driver pre-contest revenue difference with teammates' average	0.32	0.34
2	Driver Platform age	0.13	0.12
3	Pre-contest average pairwise similarity in driving area	0.10	0.10
4	Team age standard deviation	0.10	0.09
5	Team average hometown distance	0.09	0.09
6	Driver age	0.08	0.07
7	Teammate average pairwise # of pre-contest team-ups	0.04	0.05
8	# of drivers on this platform in the contest city	0.04	0.04
9	City-level pre-contest average daily order-fulfillment rate	0.03	0.03
10	Pre-contest team ranking in leaderboard	0.03	0.03
11	Prize amount for the winning team	0.02	0.02
12	# of rainy days during contest	0.02	0.02
13	Has individual threshold bonus during contest	0.001	0.001
14	# of snow days during contest	0.0004	0.001

Note: Feature importance scores reflect the proportion of node impurity reduction explained by a given feature. Features are ranked by importance scores using the dataset of the system-formed teams and the same ranking is obtained using the all-team dataset.

Table S43. Feature importance of the best-performing Random Forest Model.

Examples of Intriguing Findings: Age and Team Homophily

Institute of Education Sciences Ye et al. Predicting Individual Treatment Effects of Large scale Team Competitions in a Ride-sharing Economy ANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS KDD'2020

Takeaway (RecSys in Social Experiment)

- Driver team contest increases drivers' productivity and improves their emotional well-being.
- End-to-end data science allows iteratively building, experimenting, and analyzing.
- Machine learning joins forces with causal inference.
- The end-to-end pipeline allows integration of domain expertise and it is necessary to do so.

References

- microfinance. PNAS 2016.
- Ride-sharing Platform. Management Science, 2023.
- Ye et al. Virtual Teams for the Modern Workforce. PNAS. 2022.
- Competitions in a Ride-sharing Economy. In SIGKDD 2020.

• Ai et al. Recommending teams promotes prosocial lending in online

• Ai et al. Putting Teams into the Gig Economy: A Field Experiment at a

Ye et al. Predicting Individual Treatment Effects of Large-scale Team

Takeaway

- Recommender system as Information Filtering
 - Content based vs. Collaborative Filtering
 - Memory vs. Model based Filtering
- Recommender system can be considered as applications of machine learning algorithms (e.g. classification, regression, ranking.) Recommender system can be used to provide contextualized nudges to
- promote prosocial behaviors
- Evaluation should be the first-class citizen in designing RecSys.

Discussion

- How will LLM change the landscape of recommender system?
- Can you think about an application of recommender system in the education setting?
 - Will it be content-based filtering or collaborative filtering?
 - Can it be formulated as a machine learning problem?
 - How will you evaluate the recommender system?
 - What do you see as the biggest challenge in implementing the RecSys?

