Data Ethics and Professionalism **ISEA Session 15**

Patrick C. Kennedy University of Oregon May 10, 2024

Overview

- 1. Data ethics
- 2. Reproducibility
- 3. Communicating results

Data ethics

Motivation

> Potential and peril

- Massively accelerated rate at which data are produced
- Ways in which data are analyzed and understood are changing rapidly

> Artificial intelligence (AI)

 The use of hardware, software, and applications to perform analytics and mimic human cognitive capabilities (Stahl & Wright, 2018)

Smart information systems

- > Shorthand for technologies that use AI, machine learning, & big data (Stahl & Wright, 2018)
- > Main takeaway:
 - Wide range of tech
 - Driven by AI & big data
 - Influenced by many concerns
 - That affect desired outcomes

Smart information systems (SIS)

- > Modern SIS are ubiquitous
 - Amazon recommendations/Alexa
 - Google search/Google Translate
 - Facebook/Instagram
- > Other (education) examples?

Edtech SIS

- > Personalized learning systems (PLS) based on individual students' needs & skills (Regan & Jesse, 2019)
- > Both exciting and controversial
 - Facilitates collection of more, and more granular, information about students, teachers, and families
- > Widely used and promoted in and beyond US
 - Gates Foundation, Chan Zuckerberg Foundation
 - Ubiquitous: used in nearly all US school districts ____

Just privacy?

- > Privacy as multi-faceted concept incorporating multiple distinct ethical concerns (Westin, 1967; Solove, 2008)
- > US discussions largely focus on privacy (Regan, 1995)
- > Can lead to a myopic focus on protecting student information from inappropriate access
- > Reality is more nuanced

Information privacy

- > Minimize the amount of information collected to that required for a specific purpose
- > Addressed by fair information practice principles (FIPP): notice, consent, choice, and transparency
 - Family Educational Rights and Privacy Act (FERPA, 1974) _
 - **Children's Online Privacy Protection Act (COPPA, 1998)**
- > Widespread agreement that focusing on info privacy is ineffective in a big data context

Anonymity

- > The idea that individuals should be able to remain anonymous if they so choose
- > Nearly impossible to anonymize modern data sets, as a handful of characteristics are likely sufficient to identify individuals, particularly when combined with other data

Surveillance

- > Monitoring of activities, extraction of data about those activities, and analysis of resulting data
 - Time to answer a question or read a page
 - **Keystrokes or other patterns of responding**
 - Location, time of day, other students doing same task —
 - Cross-matched with other data (e.g., how much a student moves, or time spent on social networking)
 - Predictive analytics to determine patterns, strengths and weaknesses, and advice about how to personalize

Autonomy

- > Big data algorithms jeopardize autonomy by leading or nudging people to make specific decisions
- > Although PLS may seem to be in students' best interests, they can influence e.g., instruction without allowing students a choice

Discrimination & Bias

- > SIS can
 - Perpetuate prejudices and accentuate social inequities in subtle ways
 - **Create new forms of inequality** ____
 - Introduce potential for bias from: —
 - > Those who design the systems
 - > The algorithms themselves
- > Algorithmic complexity can make identification of bias and discrimination difficult

"Average person" in US states

Ownership

- > Who owns data produced by PLS?
- > To what extent does data generated about and by students as they use PLS belong to the school or district vs. companies?
- > Should there be limits on how companies use this data (e.g., to improve their offerings)?

What can be done?

- > Responsible Research and Innovation (RRI)
 - Efforts to ensure that SIS processes & outcomes are acceptable, desirable, and sustainable
 - Built on principles of technology ethics, technology assessment, science and technology studies, and philosophy of technology

RRI

- > Consensus is elusive
- > Common foci include:
 - Stakeholder engagement
 - Openness and transparency
 - Willingness to be flexible and responsive
 - Integration into projects, funding, & support environments

Discussion

- > Join the breakout room most relevant to you
 - 1) Info privacy, 2) anonymity, 3) surveillance
 - 4) autonomy, 5) discrimination/bias, 6) ownership
- > Discuss implications of that concern in Edtech
 - What can we, as educators with data science training, do to bring awareness to or help mitigate the issues?
 - How can we help develop a culture of responsibility among ____ stakeholders for the processes and outcomes they develop and implement in schools?

BREAK

> 5-minute break

Reproducibility

Reproducibility

- > What does it mean to be reproducible?
- > Why does reproducibility matter?
- > HOW is reproducibility achieved?

Reproducibility: What

> Conceptual

- Replicating a study with new, independent data
 - > Expensive
 - > Hard(er) to get funded and published
 - > Methodological challenges

> Computational

- When others reproduce study results given only the original data, code, & documentation
 - Retains many advantages while minimizing the largest barrier (i.e., costs)

Reproducibility: Why

- > Benefits those who do it
 - Encourages robust documentation
 - Makes revisions easier
 - Promotes modularity and reuse of code
 - Provides an indication of rigor, trustworthiness, & transparency
 - Increases citation rates

Reproducibility: Why

- > Benefits the larger community
 - Makes findings more accessible
 - Allows others to learn from your work
 - Facilitates follow-up studies ____
 - Leads to faster progress
 - Provides protection when mistakes occur ____

Reproducibility: How

>

>

>

Plan

- Develop a well-defined question
- Write and register study protocol
- Justify the proposed sample size
- Construct a data management plan
- Proactively address sources of bias

Execute

- Avoid questionable practices
- Interpret significance carefully
- Make research open

Report

- Report all findings
- Follow relevant reporting guidelines

Reproducibility: Analysis

- > Before: Plan data storage & organization
 - Location & format, data structure, metadata
- > During: Use coding best practices
 - Clean, well commented code; code review; document environment & parameters
- > After: Finalize & share results
 - Include input data, scripts, program versions, parameters, and important intermediate results
 - Choice of repository, prioritize DOI for citations

Reproducibility: Resources

- > UW eScience Reproducible and Open Research
 - <u>http://uwescience.github.io/reproducible/</u>
- > Coursera Reproducible Research course
 - <u>https://www.coursera.org/learn/reproducible-research</u>
- > Reproducibility and Replicability in Science
 - <u>https://www.ncbi.nlm.nih.gov/books/NBK547537/</u>

Communicating results

Clear communication

- Motivate the contribution >
- > Provide context (what's known)
- > Balance interpretability and accuracy

A Checklist for Communicating Science and Health Research to the Public: <u>https://www.nih.gov/about-nih/what-</u> we-do/science-health-public-trust/checklist-communicating-science-health-research-public

Clear communication

> Use visuals that can be easily understood

A Checklist for Communicating Science and Health Research to the Public: <u>https://www.nih.gov/about-nih/what-</u> we-do/science-health-public-trust/checklist-communicating-science-health-research-public

Clear communication

- > Be respectful
- > Avoid potentially offensive terms
- > Include other relevant resources
- > Provide citations and sources

A Checklist for Communicating Science and Health Research to the Public: <u>https://www.nih.gov/about-nih/what-</u> we-do/science-health-public-trust/checklist-communicating-science-health-research-public

Innovative communication

- > Get the basics right
 - Define objectives, specify your audience, frame your message, and develop a dissemination plan
- > Use websites, social media, and unique identifiers to make your work visible
- > Foster participation and collaboration

(Ross-Hellauer et al., 2020)

Innovative communication

> Embrace open science

- **Principles of equitable participation and transparency** that enable others to collaborate in, contribute to, scrutinize and reuse research, and spread knowledge as widely as possible
- > Think beyond traditional research outputs

(Ross-Hellauer et al., 2020)

Innovative communication

- > Engage stakeholders
- > Think data visualization
- > Reflect and respect diversity
- > Find and use the right tools
- > Evaluate, evaluate, evaluate

(Ross-Hellauer et al., 2020)

Assignment

- > Write a brief reflection (300-500 words) on the current or anticipated role of ethics & reproducibility in your own work.
 - What areas are most pertinent to you? How might principles of reproducibility help address (some of) these issues?

References

- > Alston, J. M., & Rick, J. A. (2020). A beginner's guide to conducting reproducible research. *Bulletin of the Ecological Society of* America, 102(2), e01801. https://doi.org/10.1002/bes2.1801 > Regan, P. M. (1995). Legislating privacy: Technology, social values, and public policy. Chapel Hill: University of North Carolina Press. > Regan, P.M., & Jesse, J. (2019). Ethical challenges of edtech, big data and personalized learning: twenty-first century student sorting and tracking. *Ethics and Information Technology*, 21, 167–179. https://doi.org/10.1007/s10676-018-9492-2 > Ross-Hellauer, T., Tennant, J.P., Banelyte, V., Gorogh, E., Luzi, D., Kraker, P., et al. (2020) Ten simple rules for innovative dissemination of research. PLoS Comput Biol 16(4): e1007704. https://doi.org/10.1371/journal.pcbi.1007704 > Schwab, S., Janiaud, P., Dayan, M., Amrhein, V., Panczak, R., Palagi, P. M., Hemkens, L. G., Ramon, M., Rothen, N., Senn, S., Furrer, E., & Held, L. (2022). Ten simple rules for good research practice. *PLoS Computational Biology*, 18(6), e1010139 > Solove, D. (2008). Understanding privacy. Cambridge: Harvard University Press. Stahl, B.C. & Wright, D. (2018). Ethics and privacy in AI and big data: Implementing Responsible Research and Innovation. IEEE Security & Privacy, 16 (3), 26-33. https://doi.org/10.1109/MSP.2018.2701164 >
 - Westin, A. (1967). Privacy and freedom. New York: Atheneum.

